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SELECTED TOPICS IX THE THEORY OF DIVER
GENT SERIES AND OF CONTINUED FRACTIONS.

BY EDWARD B. VAN VLECK.

PART I.

LECTURES 1-4. DIVERGENT SERIES.

IT may not be inappropriate for me to preface the first four

lectures with a few words of a general character concerning diver

gent series. These will serve the double purpose of indicating

the nature of the problems to be treated and of binding together

the separate lectures.

The problem presented by any divergent ser js is essentially a

functional one. When a divergent series of numbers is given, its

genesis is usually to be found in some known or unknown func

tion. The value which we attach to it is defined as the limit of

a suitably chosen convergent process, and the elements of the proc
ess are the terms of the given series or are functions having these

terms for their individual limits. Most commonly the given
numerical series

o +
j
+ a

2 + . . .

is connected with the power series

(1) a + a,x + a^
2 + ,

and the question thus reduces to that of determining under what

conditions or restrictions a value may be assigned to the latter

series when x approaches 1. The primary topic therefore is the

divergent power series, and to this we shall confine our attention

exclusively.

This topic, if broadly considered, presents itself under at least

four very different aspects. What is given is in every case a

power series with a radius of convergence which is not infinite.

Suppose first that the radius is greater than zero and that the

781C44
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* circle of-convergence is -not a natural boundary. Then the series

defines within this circle an analytic function. In the region of

divergence without the circle the value of the function may be

obtained by the familiar process of analytic continuation. The

oretically the determination of the function is a satisfactory one,

for Poincare * has shown that the function throughout the domain

in which it is regular can be obtained by means of an enume

rable set of elements, Pn(x a
n). Practically, however, when

Weierstrass process is employed for analytic continuation, the

labor is so excessive as to render the process nearly valueless

except for purposes of definition. Hence to-day a search is being

made for a workable substitute. I may refer particularly in this

connection to the investigations by Borel and Mittag-Leffler. As

I consider the work of the former to be both suggestive and

practical, I have taken it as the basis of my second lecture.

A second aspect of our topic, intimately connected with the

continuation of the function defined by (1), is the determination

of the position and character of its singularities in the region

where the series diverges. This subject is treated in Lecture 3.

When the circle of convergence is a natural boundary, it does

not appear to be impossible, despite the earlier view of Poincare

to the contrary,! to discover, at least in a certain class of cases,

an appropriate, although a non-analytic mode of continuing the

function across the boundary into other regions where it will be

again analytic. The thesis of Borel and its recent continuation in the

Ada Mathematica, together with some excellent remarks by Fabry,\

appear to be about all that has been done in this direction. A very

brief discussion of the subject will be given in the fourth lecture

in connection with series of polynomials and of rational fractions.

Lastly, we have the eonundmm of the truly divergent power
series the series which converges only when x = 0. It is upon

* Rendiconti del Circolo Matematico di Palermo, vol. 2 (1888), p. 197, or see

Borel s Theorie des fonctions, p. 53.

fThe conclusions of Poincare and Borel are not actually inconsistent, but a

new point of view is taken by the latter.

%Compt. Rend., vol. 128 (1899), p. 78.
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this interesting problem that our attention will be especially

focused in the first two lectures. In applying henceforth the

term divergent to power series, I shall restrict it to series having

a zero-radius of convergence.

I shall offer no excuse for any irregularity or incompleteness of

treatment. The admirable treatise by Borel on Les Series diver-

gentes (1901) and the masterly little book of Hadoma rd, La Serie

de Taylor et son prolongement analytique (1901), leave little or noth

ing to be desired in the line of systematic development. While it

is impossible not to repeat much that is found in these books, I

have also supplemented with other material and sought to give as

fresh a presentation as possible.

LECTURE 1. Asymptotic Convergence.

Few more notable instances of the difference between theoretical

and practical mathematics are to be found than in the treatment

of divergent series. After the dawn of exact mathematics with

Cauchy the theoretical mathematician shrank with horror from the

divergent series and rejected it as a treacherous and dangerous

tool. The astronomer, on the other hand, by the exigencies of his

science was forced to employ it for the purpose of computation.

The very notion of convergence is said by Poincare* to present itself

to the astronomer and to the mathematician in complementary or

even contradictory aspects. The astronomer requires a series which

converges rapidly at the outset. He cares not what the ultimate

character may be, if only the first few terms, twenty for example,

suffice to compute the desired function to the degree of accuracy

required. Consequently he judges the series by these terms.

If they increase, the series is for him non-convergent. To the

mathematician the question is not at all concerning the nature of

the series ab initioj but solely concerning its ultimate character.

Let me illustrate the difference by referring to Vessel s series

~ / oJ v*
j _ x

/
j ?:

_j_

methodes nouvelles de la mecanique cekste, vol. 2, p. 1.
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which is a solution of the equation

&amp;lt;*&amp;gt; *g + **--*-a

This is convergent for all values of x, but when x is very large

the series is worthless for computation-lowing to the rapid and

long-continued increase of the terras before the convergence finally

sets in. The astronomer and physicist therefore have been driven

to use for large values of x an expansion which is of the form *

A A
A +-- + -+-

or, what is the same thing,

cos :

(3)

L -f
-

Here the multipliers of C and I) are only formal solutions of the

differential equation (2).
In respect to convergence they have a

character exactly opposite to that of J
n ,

since for very large values

of x the terms at first decrease rapidly but finally an increase

begins. At this point the computer stops and obtains a good ap

proximate value of J
n

.

What is the significance of this ? It is strange indeed that no

attempt was made to study the question until 1886, when Pom-.

care f and Stidtjes J simultaneously took it up. That so evident

and important a problem should have been so long ignored by
the mathematician emphasizes strongly the need of closer touch

between him and the astronomer and the physicist. Both Poineart

and Stidtjes regarded the series as the asymptotic representation

*See, for example, Gray and Mathew s Treatise on Bessel Functions, chap. 4.

f Acta Math,, vol. 8, p. 295 ff.

J Thesis, Ann. de V EC. Nor., ser. 3, vol. 3, p. 201.
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of one or more functions. While the latter writer studied care

fully certain divergent series of special importance with the object

of obtaining from the series a yet closer approximation to the

function by a species of interpolation, Poincare developed the

idea of asymptotic representation into a general theory.

To explain this theory
* and at the same time to develop certain

aspects scarcely considered by Poincart, I shall start with the

genesis of a Taylor s series. Take an interval (0, a) of the posi

tive real axis, and denote by f(x) any real function which is con

tinuous and has n + 1 successive derivatives at every point within

the interval. Xo hypothesis need be made concerning the char

acter of the function at the extremities of the interval except to

suppose that /(a), / (#), , f^(p)ln \ have limiting values a
QJ p

.

-,
a

n
when x approaches the origin. Thus the function at any

point within the interval will be represented by Taylor s formula :

ax

If the function is unlimitedly differentiable and limiting values

of/(n)
(.r)/&amp;gt;i

! exist for all values of n when x approaches 0, the

number of terms in the formula can be increased to any assigned

value. Thus the function gives rise formally to a series

(1) o
()
-f rT-|- 2

.r
2 + -,

uniquely determined by the limiting values of the function and its

derivatives.

The converse conclusion, that the series determines uniquely a

function fulfilling the conditions above imposed in some small in

terval ending in the origin, can not, however, be drawn. This is

not even the case when the series is convergent. Suppose, for

example, that a
n
= for all values of n. Then in addition to

*Cf. Peano, Atti deUa R. Accad. ddle Scienze di Torino, vol. 27 (1891), p. 40
;

reproduced as Anhang III (&quot;Ueber die Taylor sche Formel&quot;) in Genocchi-

Peano s Differential- und Integral-Rechnung, p. 359.
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i

f(x) = we have the functions e~ l/x
,
e~ l/x

\ -

,
which fulfill the

assigned conditions. They are, namely, unlimitedly differentiable

within a positive interval terminating in the origin, and when x

approaches the origin from within this interval, the functions and

their derivatives have the limit 0. From this it follows imme

diately that if values other than zero be prescribed for the a
n ,
the

function will not be uniquely determined, since to any one deter

mination we may add constant multiples of e~1/x
,
e~ l/x

&quot;~,

Inasmuch as the correspondence between the function and the

series is not reversibly unique, the series can not be used, in

general, for the computation of the value of the generating func

tion. Nevertheless, although this is the case, the series is not

without its value. For consider the first m terms, m being a

fixed integer. If x is sufficiently diminished in value, each of

these terms can be made as small as we choose in comparison with

the one which precedes it, and the series therefore at the begin

ning has the appearance of being rapidly convergent, even though

it be really divergent. Evidently also as x is decreased, it has

this appearance for a greater and greater number of terms, if not

throughout its entire extent. Now by hypothesis the generating

function was unlimitedly differentiable within the interval, and

the successive derivatives are consequently continuous within (0, a).

Hence if the interval is sufficiently contracted, f(m+l
\x) /(m -f 1)!

can be made as nearly equal to am+l throughout the interval as is

desired. We have then for the remainder in Taylor s formula :

f(*+WOy\

(4) lUW-V -au Ci + f)

in which e is an arbitrarily small positive quantity. Consequently

if the first m + 1 terms of the series should be used to compute

the value of the generating function, the error committed would

be approximately equal to the next term, provided x be taken suf

ficiently small.

In these considerations there is, of course, nothing to indicate

when x is sufficiently small for the purpose. If the result holds
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simultaneously for a large number of consecutive values of w, the

best possible value for the function consistent with our informa

tion would evidently be obtained by carrying the computation

until the term of least absolute value is reached and then stopping.

Herein is probably the justification for the practice of the com

puter in so doing.

Equation (4) which gave a limit to the error in stopping with

the (m -\- Y)th term shows also that this limit grows smaller as x

diminishes. Since, furthermore, by increasing m sufficiently the

(wi + 2)th term of (1) may be made small in comparison with the

(m -f l)th term, it is clear that on the whole, as x diminishes, we

must take a greater and greater number of terms to secure the best

approximation to the function. These two facts may be comprised

into a single statement by saying that the approximation given

by the series is of an asymptotic character. This will hold

whether the series is convergent or divergent.

This notion can be at once embodied in an equation. From (4)

we have

(5) lim
x=0+

= lim = (m = 1, 2,
. .

.).

x=0+

This equation is an exact equivalent of the two properties just

mentioned and is adopted by Poincare * as the definition of asymp
totic convergence. More explicitly stated, the series (1) is said

by him to represent a function f(x) asymptotically when equation

(5) holds for all values of m.

It will be noticed that this definition omits altogether the

assumptions concerning the nature of the function with which we

started in deriving the series. Xot only has the requirement of

unlimited differentiability within an interval been omitted but the

existence of right-hand limits for the derivatives as x approaches

the origin is not even postulated. If the value f/ be assigned to

*Loc. cit.

6
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the function at the origin, it will have a first derivative, a
l9

at this

point but it need not have derivatives of higher order.*

The exclusion of the requirement of differentiability has un

doubtedly its advantages. It enlarges the class of functions which

can be represented asymptotically by the same series. It also

simplifies the application of the theory of asymptotic representa

tion, and this is perhaps the chief gain. The results of Poincare s

theory can readily be surmised. The sum and product of two

functions represented asymptotically by two given series are

represented asymptotically by the sum- and product-series respec

tively, and the quotient of the two functions will be represented

correspondingly, provided the constant term of the divisor is not 0.

Also if f(x) is any function represented by the series (1), whether

convergent or divergent, and

is a second series having a radius of convergence greater than
|

-

,

the asymptotic representation of
&amp;lt;[/(x)]

will be the series which

is obtained from

\ + 6iK + a
i
x + ) + b

z(
a

o + a
i
x + - -

)

2 +

by rearranging the terms in ascending powers of x. Lastly, the

integral of f(x) will have for its asymptotic representation the

term by term integral of (1). But the correspondence of the func

tion and series may be lost in differentiation, for even if the

function permits of differentiation, its derivative will not neces

sarily be a function having an asymptotic power series. Examples

of this kind can be readily given.f

* The ordinary definition of an nth derivative is here assumed. If, however,

we define the second derivative by the expression

and the higher derivatives in similar fashion, the function must have derivatives

of all orders.

f Cf. Borel, Les Series divergences, p. 35.
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This failure is on many accounts an unfortunate one. If a

further development of Poincare s theory is to be made and this

seems to me both a possibility and a desirability his definition

probably should be restricted by requiring (a) that the function

corresponding to the series shall be unlimitedly differentiable in

some interval terminating in the origin, and (6) that the deriva

tives of the function should correspond asymptotically to the

derivatives of the power series. These demands are satisfied in

the case of an analytic function defined by a convergent series and

seem to be indispensable for an adequate theory of divergent

series.*

Thus far we have considered asymptotic representation only for

a single mode of approach to the origin. Suppose now that an

analytic function of a complex variable x is represented by (1) for

all modes of approach to the origin, and let be the value assigned

to the function at this point. Then if the function is one-valued

and analytic about the origin, it must also be analytic at this point

since it remains finite. Hence the series must be convergent.

The case which has an interest therefore is that in which the

asymptotic representation is limited to a sector terminating in the

origin. Suppose then that (1) is a given divergent series, and let

a function be sought which fulfills the following conditions : (a)

the function shall be analytic within the given sector for values of

* These requirements are formulated from a mathematical standpoint with a

view to extending the theory of analytic functions, and doubtless will be too

stringent for various astronomical investigations. Prof. E. W. Brown suggests

that for such investigations the conditions might perhaps be advantageously
modified by making the requirements for only m derivatives, 771 being a number
which varies with x and increases indefinitely upon approach to the critical point.

He also points out the difficulties of an extension in the case of numerous astro

nomical series which have the form/(x, t)
= OQ -{- a^x -j- o^z

2 + ,
where a,- is a

function of x and t, cf/dt being a convergent series. Poincare s definition is how- .

ever still applicable.

Oftentimes in celestial mechanics the only information concerning the func

tion sought is afforded in the approximation given by the asymptotic series. An

objection to Poincare s definition is that it presupposes a knowledge of the func

tion sought, for example, that lira /(*) =a ,
when x= 0. As a matter of fact

the properties are often unknown. See in this connection p. 89 of these lectures.
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x which are sufficiently near to the origin ; (6) it shall be repre

sented asymptotically by the given series within the sector, whether

inclusive or exclusive of the boundary will remain to be deter

mined
; (c)

the asymptotic representation shall not be valid if the

angle of the sector is enlarged. So far as I am aware, the exist

ence of a function or of functions which meet these requirements

has never been demonstrated, though it seems likely that they in

general exist. It is, however, very possible that the sector must

be restricted in position as well as in magnitude. It may be

found necessary to require that the interior of the sector shall

not include certain arguments of x
;
for example, in the case

of the series ^m\xm * the argument 0, for which the terms

have all the same sign, f If this be true, the sector will

very probably have two such arguments for its boundaries.

When there is a function which satisfies the conditions im

posed, it can not be unique. For clearly e~1/x
,
e~ 1Ae

*,
e~ l/* 5

, ,

within certain sectors of angle TT, 2?r, STT, ,
have an asymptotic

series in which each coefficient is 0. If, then, any function has

been obtained satisfying the conditions stated, one or more of these

exponentials, after multiplication by suitable constants, may be

added to the function without destroying its properties. Hence

if a divergent series is to represent a function uniquely, supple

mentary conditions must be imposed. The nature of these condi

tions has not yet been ascertained. J

In closing the general discussion a simple extension of the

notion of asymptotic convergence should be mentioned which is

necessary for the applications to follow. F(v) is said to be repre

sented asymptotically by

*This series is discussed in the next lecture.

t Borel (loc. cit., p. 36) in his exposition of Poincare s theory seems to make

the definite statement that there are arguments for which no corresponding func

tion exists, but I am unable to find any proof of the statement.

t In this connection see pp. 89-92 of Borel s article, Ann. de I EC. Nor., ser. 3,

vol. 16 (1899).
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when the series in parenthesis gives such a representation of

F(x)/(x).
The applications of Poincare s theory have been made chiefly

in the province of differential equations
* where divergent series

are of very common occurrence. We will take for examination

the class of equations, of which the theory is perhaps the most

widely known, the homogeneous linear differential equation with

polynomial coefficients :

(6) P g + Prl(x)^ + + P (% - 0.

This is, in fact, the class of equations to which Poincare first

applied his theory,f but his discussion of the asymptotic repre

sentation of the integrals was limited to a single rectilinear mode

of approach to the singular point under consideration. The de

termination of the sectors of validity for the asymptotic series

has been made by Horn,\ who in a number of memoirs has care

fully studied the application of the theory to ordinary differential

equations.

As is well known, the only singular points of (6) are the roots

of P
n(x) and the point x = oo. For a regular singular point ||

we
have the familiar convergent expressions for the integrals given

by Fuchs. Consider now an irregular singular point. By a linear

transformation this point maybe thrown to oo, the equation being
still kept in the form (6). Suppose then that this has been done.

If P
n

is of the pth degree, the condition that x = oo shall be a

regular singular point is that the degrees of P
n_v -P

n_
-

,
P

Q

shall be at most equal to p 1, p 2, , p H, respectively.

For an irregular singular point some one or more of the

degrees must be greater. Let h be the smallest positive integer

for which the degrees will not exceed successively

* In addition to the memoirs cited below Poincare s Les methodes nouvelies de la

mecanique celeste and various memoirs by Kneser may be consulted.

1[Acta Math., vol. 8 (1886 ), p. 303. See also Amer. Jour., vol. 7
( 1885), p. 203.

J Jfoto. Ann., vol. 50 (1898), p. 525.

\ See various articles in Crelles Journal and the Mathematische Annalen.

||
Stelle der Bestimmthcit.
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The number h is called the rank of the singular point oo, and the

differential equation can be satisfied formally by the series of

Thomae or the so-called normal series :

(t-1, 2, ...,n).

Unless certain exceptional conditions are fulfilled, there are n of

these expansions, and in general they are divergent. To simplify

the presentation let us confine ourselves to the case for which

h = 1 . Then at least one of the polynomials succeeding Pn
will

be of the pth degree, and none of higher degree. Place

P = Ax* Ja*- 1
.

and construct the equation

(8) A,* + A^sr-\+... + At
-0.

The n roots of this equation are the n quantities a. which appear

in the exponential components of the S..

As a particular illustration of the class of equations under con

sideration, BessePs equation ( Eq. (2) ) may be cited. Here the

point oo is of rank 1, the characteristic equation is

A
Q
a* + A^ + A 2

= a2 + 1 = 0,

with the roots

i
= - *

&amp;gt;

a
2
= +

i&amp;gt;

and the two Thomaean integrals are

y,

o + V
/ i&amp;gt;

-**&quot;( D, -I- ^i
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in which p l9 p2
are yet to be ascertained. After this has been

done, the coefficients of (9) can be determined by direct substitu

tion in (2).

To avoid complications we will assume that the ?i roots of the

characteristic equation (8) are all distinct, also that the real parts of

no two roots are equal. Mark now in the complex plane the points

a
iy
a

2 , -,
a

n ,
and draw from them to infinity a series of parallel

rays having such a direction that no one of the rays with its pro

longation in the opposite direction shall contain two or more of

these points. Finally surround the points GL with small circles,

so that we shall have the familiar loop circuits for the paths of

integration of the integrals which we now proceed to form. Put

(10) 7
?i
=

(i 1, , n),

in which vJ(z) is a function to be subsequently fixed. In order

that the integral may have a sense, x will be so restricted that the

real part of zx shall be negative for the rectilinear parts of the

loop circuits. We can then so determine v
{(z)

that 77. shall be a

solution of (6).

For this purpose substitute rj. for y in (6). A reduction, based

on the integration of (10) by parts,* gives for
r.(z) the equation

dpv
(11) (A? + A^f-

1 + + Aa)
-

d
-
p +..-+() r = 0,

This is known as Laplace s transformed equation. While the

original equation was of the ?ith order with coefficients of the pth

*Cf. Picard s Traite cC Analyse, vol. 3, p. 383 ff., or Poincare, Amer. Jour.,

vol. 7 (1885), p. 217 ff.
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degree, the transform is of the pth order with coefficients of the nth

degree. Its singular points in the finite plane are the roots of the

first coefficient of (11), which is identical with the left hand mem
ber of (8). Furthermore, an inspection of (11) shows immedi

ately that each of these singular points a. is regular, and the

exponents which belong to it are

0, 1, 2,
-

., p - 2, ^ = -
(p(
+ 1) (/

=
!, 2, ., ),

in which p. is the exponent of x, hitherto undetermined in (7).

Hence if @. is not an integer, there is an integral of (11) having
the form

which, when continued analytically, can be taken as the function

v
{
. Thus for the solution of (6) we obtain

If, finally, a. -f yfx is substituted for z the integral becomes

(12) ,
= ^ar*- -* ey, (* + k, + k + .)dy,

where the transformed path of integration is a loop circuit which

encloses the origin of the y-plane, the rectilinear portion of the

path lying in the half plane for which the real part of y is negative.

We have thus reached a solution of the differential equation

under the form of an improper integral of a convergent series.

The integration of (12) term by term, which is a purely formal

process, gives at once the normal integral St
of (7), in which

The asymptotic character of S. can be quickly demonstrated.

For let unR
n(u) denote the remainder after n terms of the series

Q 4. kiU + k
2
u2 +

Then

*Horn, foe. cit., or Ada Math., vol. 24 (1901), pp. 299 ff.
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Since the integral in the right hand member, taken along the loop

circuit, can be shown to remain finite when x = ac, we have

lim * Lr~X- - C + +..- +
&quot;

1= 0.

But this is the statement of Poincare s definition of asymptotic

convergence for x= oc.

I have sketched this lengthy process in some detail because it

is a thoroughly typical one and indicates the present status of the

theory of asymptotic series. It will be observed that the follow

ing course is pursued :

1. First, it is discovered that the differential equation permits

of formal solution by a certain divergent series.

2. By some independent process the existence of an actual solu- A

tion is ascertained which permits formally of expansion into the

series. Usually the solution is found under the form of an inte

gral, and Horn has applied the theory chiefly in cases in which

solutions of this form were known. (Lately, however, he has

used solutions obtained from the differential equation by the

process of successive approximation.*)

3. The asymptotic character of the series is then argued and,

finally, the sector within which this representation is valid is

determined.

The status of the theory thus exhibited seems to me an unsat

isfactory and transitional one. It is to be hoped that ultimately

the theory will be so developed that the mere existence of a diver

gent power series as a formal solution of the differential equation

will be sufficient for the immediate affirmation of the existence of

one or more solutions which are analytic functions with certain

specified properties.

* Math. Ann., vol. 51 (1898), p. 346. In Crelle s Journal, vol. 118(1897),
still another method is used for obtaining the solutions.
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It remains yet to fix the sectors within which the solutions rj.

can be represented asymptotically by the normal integrals. These

sectors have been specified by Horn* in the following manner.

Let straight lines be drawn from each singular point a. to every
other point and produce each joining line to infinity in both direc

tions. A set of lines will be thus fixed, radiating from the point oo .

Let their arguments, taken in the order of decreasing magnitude,
be denoted by ,

*&amp;gt;!&amp;gt; * !
W

r&amp;gt; r+l
=

*&amp;gt;!

~ ^ &amp;gt;

W
2r
=

r
~ ^

Suppose now that the argument of the rectilinear part of the

path of integration for ?;a
. in the plane of z lies between &&amp;gt;

p_ 1
and

&)
p

. Then TJ. is represented asymptotically by 8
{
for values of the

argument of x between Tr/2 o)
p
_

1
and ?r/2 ft&amp;gt;

p+ r.t

To the general solution of (6), c^ -f c
2?;2 -f . . . -f c

n ijn ,
there

corresponds the divergent expansion

(C*
C*

c
&amp;gt;

+ ~^r + i?
(13)

Here the real parts of two exponents, ax and
ajxy

are equal only

when arg(a. 0^)0?
is an odd multiple of TT/ 2; that is, when argx

is equal to Tr/2 o&amp;gt;.

(i
=

1, , 2r). Suppose then that for

7T/2 a)
p
_

l &amp;lt; arg x
&amp;lt; Tr/2 p+r

we so assign subscripts to the a. that

jRfoa) &amp;gt; R(a2x) &amp;gt;

. . .
&amp;gt; R(ax).

Then all the integrals for which c
x =f= have in common the

asymptotic series c
l
Sv while those for which 0^

= c
2
= - = c._v

*Horn, Math. Ann., vol. 50 (1898), p. 531.

t In certain cases the asymptotic representation may be valid for a greater

range of values of the argument of x, as in the case of BesseFs equation discussed

below.
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c.
=)= 0, are represented by o^. Thus it appears that between the

arguments considered Sn
is the only one of the n asymptotic series

S. which defines a solution of the differential equation (6) uniquely.

Changes in the asymptotic series representing a solution may
occur from two causes, either because x passes through one of the

critical values above mentioned for which there is a change in the

dominant exponential in (13), or because of a sudden alteration in

the values of the constants c
i
for certain values of the argument.

This can be made clear, in conclusion, by illustrating with Bessel s

equation.* For this equation, as we saw,

i
= -

&amp;lt;&amp;gt; 2
= +

*&amp;gt;

and hence

3?r TT

Also since Laplace s transform for the particular case before us is f

the exponent p. for either of the two singular points z = i has

the value J. Accordingly the series (13) for c
l rj l -f c

2rj2 may be

written

+ DV(x),

as previously given in
(3).

If the imaginary part of x is nega

tive, OU(x) is the dominant term in (3) and gives the asymptotic

representation of the general solution, c
lrj l -f c

2?;2
. On the other

hand, if the imaginary part is positive, the dominant term is

* A brief but very interesting discussion is given in a letter of Stokes in the

Ada Math., vol. 26 (1902), pp. 393-397. Compare also 3 of Horn s article,

Math. Ann., vol. 50 (1898), p. 525.

1[Math. Ann., vol. 50, p. 539, Eq. B .
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D\ r

(x).
The changes in the values of C and D take place only

when arg x passes through the values (2n -f l)-7r/2. Then the

coefficient of the dominant term remains unaltered, while the coeffic

ient of the inferior term is altered by an amount proportional to the

coefficient of the dominant term.f We conclude, therefore, that

in general the asymptotic series for any solution of BesseVs equa

tion changes abruptly for values of the argument congruent with

(mod TT). Furthermore, the series can not be valid for a

greater range of values of the argument unless when arg x = 0,

either 7) = or C = 0. In the former case we have a particular

solution Crj l
which is represented by the series CU(x) for

TT
&amp;lt; arg x

&amp;lt; 2-Tr,

and in the latter case a solution Drj2 represented by DV(x) for

2-7T
&amp;lt; arg x

&amp;lt;
TT.

I Thus from the infinitely many solutions of BesseVs equation having

the common asymptotic representation CU(x) and D V(x) respec

tively, these two solutions can be singled out by the requirement

\ that the asymptotic representation shall have the maximum sector

of validity.

LECTURE 2. The Application of Integrals to Divergent Series.

In the first lecture a divergent series was connected with a group

of functions, for which it afforded a common asymptotic represen

tation. In the present lecture I shall treat of methods which

have been used to derive a function uniquely from the series.

To establish, whenever possible, such a unique connection, to

develop the properties of the function, and to determine the laws

and conditions under which the series can be manipulated as a sub

stitute for the function this may be said to be the ultimate aim

of the theory of divergent series.

Up to the present time this goal has been reached only for a

restricted class of divergent series. Furthermore, the uniqueness

f Stokes, loc. cit.
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of correspondence between the function and the series has been

attained, not by a specification of the properties of the function,

but by means of some algorithm which, when applied to the series,

yields a single function. Unquestionably the instrument by which

the greatest progress has been made thus far is the integral. The

first successes, however, were reached by Laguerre
* and Stieltjes f

through the use of continued fractions, and very possibly in the

end the continued fraction will prove to be the best, as it was the

earliest tool. But as yet it has been applied only in cases in which

the function can be represented under the form of an integral as

well as of a continued fraction, although with greater difficulty.

To explain the use of integrals let us consider the familiar

divergent series treated by Layuerre,

(1) 1 +.T + 2!.^
2 + 3!a3

-f ....

This is, I believe, historically the first divergent series from which

a functional equivalent was derived. J Since

*See No. 20 of the bibliography at the end of lecture 6.

t Bibliography, No. 26a.

J Laguerre (loc. cit.) gives the function first in the form of a continued fraction \

and later proves its identity with the integral which gives rise to the divergent

series. Borel at the opening of the second chapter of Les Series divergentes remarks

that &quot;

Laguerre parait avoir le premier montre nettement Putilite qu il peut y
avoir a transformer une serie divergente ... en une fraction continue conver-

gente.&quot; It seems almost to have escaped notice (see, however, p. 110 of Prings-

heim s report, Encyklopddie der Math. Wissenschaften, I A 3), that Euler (Biblio

graphy, No. 46 ) derived a continued fraction from the divergent series

1 -f mx -f m(m -f- n)x
2
-f m(m + n) (m -j- 2n)x

3
-j
----

,

of which Laguerre s series is a special case, and clearly realizes the utility of the

continued fraction. Moreover, a close parallel to the course followed by Laguerre
is found in the work of Laplace who derives from the expression

a divergent series and from this in turn a continued fraction, the convergents of

which were stated by him and proved by Jagobi to be alternately greater and less

than the expression. Had Jacobi proved also the convergence of the continued

fraction, the work of Laguerre would have had an exact parallel for real values

of x. Cf. No. 47 of the bibliography.
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ml = T(m + 1)
=

|
e-*zmdz,

Jo

the series may be written

rS*X
-oo

e~ adz + x I e~~zdz -f x2
I e~ zz

2dz -f ,

Jo Jo

the path of integration being the positive real axis. If, then, by
a merely formal process, the sum of the integrals is replaced by
the integral of the sum, we obtain

Je~
z

(I + xz + x2
z
2

-f-
.

) dz,
.

(2) /(). r e
-

F(zx),h,
Jo

or a function

(2)

in which

1 zx

The function thus derived is an improper integral which has a

significance for all values of x except those which are real and

positive. It can be shown also to be analytic for all except the

excluded values of x. One of the simplest proofs is as a corol-

lary of the following exceedingly fundamental theorem of Vallee-

jPcmssm,* which we shall have occasion to use again later : If in

the proper integral

I f(x,z)dz

the integrand is continuous in z and x for all values of z upon the

path of integration and for all values of x within a region T; if,

furthermore, for each of the above values of z it is analytic in x over

the region Ty
the integral will also be an analytic function of x in

the interior of T. By this theorem, if t is a point on the positive

real axis,

e~ zdz

fJo ZX

*Ann. de la Soc. Sclent, de JBruxelles, vol. 17 (1892-3), p. 323.
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will represent an analytic function of x over any closed region of

the ce-plane which excludes the positive real axis. If, now, t

passes through any indefinitely increasing set of values,

i &amp;lt;
*
2 , &amp;lt;* ,

we have in

a series of analytic functions which is seen at once to converge

uniformly over the region considered, since

e~ sdz

zx

for sufficiently great values of / andy. The limit (2) is therefore

analytic.

By deforming the path of integration the same conclusion con

cerning the analytic character of

the function (2) can be extended-f \_
_&amp;gt;V / o x *

to all values of x upon the posi

tive real axis excepting and oo, and when the deformation is

made on opposite sides of a fixed point x, the two values of the

integral will be found to differ by

(3)

The integral accordingly represents a multiple-valued function

with the singular points and oo, the various branches of which

differ from one another by multiples of the period (3).
For the

initial branch which was given in (2) the limit of f^
n

\x)/nl will

be the
(;i -f l)th coefficient of (1) if x approaches the origin

along any rectilinear path except the positive real axis.

Let the process which has been adopted for the series of IM-

guerre be applied next to any other series

(I) + ajX -f a
2
a
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having a finite radius of convergence. If we write the series in

the form

then replace the factor n ! by its expression as a F-integral, and

finally, by a step having in general only formal significance, bring
all the terms under a common integral sign, we shall obtain

fj. \ .. r
or

(4) f e-F(zx)dz,
Jo

in which

This integral is the expression upon which Borel builds his theory

of divergent series, and may be regarded as a generalization of a

very interesting theorem of Caesaro* The series (5) is called

the associated series of (I).

Two cases are now to be distinguished according as the funda

mental series (I) has, or has not, a radius of convergence R which

is greater than 0. If the radius is not zero, the associated series

has an infinite radius since

n lan n LR-X 1 +
)&quot;hm A -. = lun \ *= - =

0,
n=at \n! TC=to \ nl

and it accordingly represents an entire function. It is a simple
matter to prove that the integral (4) will have a sense if x lies

within the circle of convergence of (I), and that the values of the

integral and series are identical. But the integral may also have

a sense for values of x which lie without the circle, and in this case

the integral may be used to get the analytic continuation of (I).

* Cf. Borel, Les Series divergcntes, pp. 88-98.
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The series is said by Borel to be swnmable * at a point x when the

integral (4) has a meaning at this point.

The second case is that in which the fundamental series is

divergent. The associated series in this case may be either con

vergent or divergent. If it is convergent only over a portion of

the plane of u = zx, we are to understand by F(u) not merely the

value of the associated series but of its analytic continuation.

Let x for an instant be given a fixed value. Then when z

describes the positive real axis, u in its plane describes the ray

from the origin passing through the point x. If F(u) is holomor-

phic along this ray, it is possible that the integral (4) will have a

sense. Suppose that this holds good as long as x lies within a

certain specified region of its plane. Then for this region a func

tion will be obtained uniquely from the divergent series by the use

of the integral, precisely as in the case of the series of Laguerre.

This method of treatment is obviously restricted to divergent

series for which the associated series are convergent, and it will

not always be applicable even to these. A divergent series in which

there is an infinite number of coefficients of the same order of mag
nitude as the corresponding coefficients of

(6) 1 + x + (2 !)V + (3 !)

2x3
4- . . . + (!)V + . . .

can not be summed in this manner. It will be noticed, however,

that the series just given is one whose first associated series is the

series of Laguerre, and whose second associated series is conse

quently convergent.

The method of Borel can be readily extended so as to take

account also of such series, or, more generally, of series that have

an associated series of the ?ith order which is convergent. One

mode of doing this is by the introduction of an n-fold integral.

Suppose, for example, that in (6) one of the two factorials n ! is

replaced by

e~s
z
ndz

f&amp;lt;

* Some other term would be preferable since his definition refers only to one

of many possible modes of summation. A series may be simultaneously &quot;sum-

mable &quot;

at a point x by one method, and non-summable by another.
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and the other by

Xerftit..

The (n -f- 1 )th term of the series becomes

xn

I I
e- f-z

z
n
t
n
dzdt,

Jo Jo

and we obtain the two-fold integral

dzdt
tzx

for the functional equivalent of the series. This is a function,

the initial branch of which is analytic over the entire plane of x

except at the points and oo.

We turn now to the consideration of the region of surumability,

in which x must lie in order that the integral shall have a sense.

Borel has determined the shape of this region when the funda

mental series (I) is convergent, but in so doing he restricts him

self to what he calls the absolutely summable series. The series

(I) is said to be absolutely summable for any value of x when the

integral (4) is absolutely convergent and when, furthermore, the

successive integrals

have also a sense.*

To fix the shape of the region Borel shows first that if a func

tion defined by a convergent series (I) is absolutely summable at

a point -P, it is analytic within the circle described upon the line

OP as diameter, connecting P with the origin ; conversely, if it

is analytic within and upon a circle having OP as diameter, it

must be absolutely summable along OP, inclusive of the point

*The condition (7) was not originally included in Borel s definition of abso

lute summability (Ann. de V EC. Nor., ser. 3, vol. 16, 1899), and is superfluous

in fixing the shape of the region. Cf. Math. Ann., vol. 55 (1902), p. 74. The

modification of the definition was introduced in the Series diveryentes and is

needed for the developments explained below, p. 102. Chapters 3 and 4 of this

treatise can be read in connection with the present lecture.
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P. As P moves outward from the origin along any ray, the lim

iting position for the circle is one in which it first passes through

a singular point S, and at this point SP and OS subtend a right

angle. The region of absolute summability can therefore be

obtained as follows : Mark on each ray from the origin the

nearest singular point of the function defined by (I),
if there

is such a point in the finite plane. Then through this point

draw a perpendicular to the line. Some or all of these per

pendiculars will bound a polygon, the interior of which con

tains the origin and is not penetrated by any one of the perpen

diculars. This region is called the polygon of summabiUty. If

the singularities of the function are a set of isolated points, the

polygon will be rectilinear. For the extreme case in which the

circle of convergence is a natural boundary, the polygon and

circle coincide. In every other case the circle is included in the

polygon. Thus by the use of (4) Borel effects an analytic con

tinuation of the series over a perfectly definite region whenever an

analytic continuation exists. On passing to the exterior of the

polygon the series ceases to be absolutely summable. As an

example of this result, take the series

x3 x5

which is the familiar expansion of J log (1 + x)/(l x). The

singular points of the function are + 1 and 1, the circle of

convergence is the unit circle, and the polygon of summability
is a strip of the plane included between two perpendiculars to the

real axis through the points 1.

When the given series is divergent, the form of the domain of

summability has not been determined with such precision. The /

only information which we have upon the subject is contained in J

a brief but important communication by Phragmen in the Comp-
tes Rendus,* published since the appearance of BoreVs work.

Phragmen considers here the domain, not of absolute, but of sim

ple summability for Laplace s integral

* Vol. 132, p. 1396
; June, 1901.
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(8)

in which f(zx) denotes an arbitrary function.

To adopt a term of Mittag-Leffler, the domain is a &quot;

star,&quot;

which is derived as follows : Draw any ray from the origin. If

the series is summable at a point X
Q
of this line, Phragmen shows

that it is summable at every point between x and the origin 0.

There is therefore some point P of the line which separates the

interval of summability from the interval of non-summability.

If the function is summable for the entire extent of the ray, P
lies at infinity. In any case let the segment OP be obliterated

and then make a cut along the remainder of the line. When the

same thing is done for every ray which terminates at the origin,

there is left a region called a star, bounded by a set of lines radi

ating from a common center, the point at infinity.

Phragmen says that the proof of this result is so simple that it

can be given
&quot; en deux mots&quot; For this reason I shall repro

duce it here. We are to show that if the integral converges for

any value x = X
QJ

it will also converge for x 6x
Q,

if
&amp;lt;

6
&amp;lt;

1 .

Place

/) =
&amp;lt;/&amp;gt;(*)

+ i+(z).

For x = x the real and imaginary components of the integrals,

(9) r#*)e- efe, i r^(z)e-*dz,
Jo Jo

have a sense. We are to prove that the integrals

obtained by replacing X
Q by &X

Q,
also exist. Consider either inte

gral, for example the former. Let
&amp;lt;

a
x &amp;lt;a2 &amp;lt; oc, and put

J=
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By the change of variable w = Qz this becomes

&amp;lt;j)(w)e~

wdw.

Since e~^ /e~ l} is a positive and decreasing function in the interval
,

considered, the second mean-value theorem of the integral calculus*

may be applied, giving

(11) .
) /0a

J0a

in which a designates an appropriate value between a
t
and a

2
.

This, as Phragmen says, proves the theorem, but a word or two

of explanation additional to his &quot; deux mots &quot;

may not be unac

ceptable to some of my hearers. The necessary and sufficient

condition for the existence of the first of the two integrals given

in (10) is that by taking two values a
x
and a

2 sufficiently small or

two values sufficiently large, the integral / may be made as small

as we choose. Xow this is true of

rt/o &amp;lt;f)(v:)e-

irdw

since the integrals (9) exist, and equation (11) show then that it

must be true likewise of J because the factor e~a^ l~ 0)
/O has an

upper limit for
&amp;lt;

Q
l &amp;lt; &amp;lt;

1 and
&amp;lt;

a
x &amp;lt;

oo . It follows

therefore that the integrals (10) exist.

Two other facts stated by Phragmen are also of interest. The

function of x defined by (8) is a monogenic function which is holo-

morphic at every point in the interior of a circle described upon
OP as diameter. If, also, in place of f(zx) we take the associated

series F(zx) of a convergent series (I), the star of convergence

coincides with BorePs polygon of absolute summability. Thus

the regions of absolute and non-absolute summability are the

same, or differ at most only in respect to the nature of the boun

dary points.

* Bonnet s form : Encyklopadie der Math. Wiss., II A 2, \ 35.
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It might be thought that the result of Phragmen makes the con

cept of absolute summability useless. This is, however, in no

wise the case. At any rate, Borel employs the concept to estab

lish the important conclusion that a divergent series, if absolutely

summable, can be manipulated precisely as a convergent series.

Thus if two absolutely summable series, whether convergent or

divergent, are multiplied together, the resultant series will also be

absolutely summable, and the function which it defines will be

the sum or product of the functions defined by the two former

series. Or, again, if an absolutely summable series is differen

tiated term by term, another such series is obtained, and the latter

yields a function which is the derivative of the one defined by

the former series. Lastly, the function determined by an abso

lutely summable series can not be identically zero, unless all the

coefficients of the series vanish.

These facts make possible the immediate application of Borel s

theory to differential equations. If, in short,

P(x, y, /,-.., y&amp;lt;&amp;gt;)

=
is a differential equation which is holomorphic in x at the origin and

is algebraic in y and its derivatives, any absolutely summable

series (I), which satisfies formally the equation, defines an analytic

function that is a solution of the equation. For example, it will be

found that the series of Laguerre satisfies formally the equation

and hence the function
&amp;gt;

- 7
e~&quot;dz

1 zx

must be a solution of the equation.

These conclusions of Borel should be strongly emphasized.

In any complete theory of divergent series it is an ultimatum

that they shall in all essential points
*
permit of manipulation

*In an absolutely summable series it is not always legitimate to change the

order of an infinite number of terms. Cf. Borel, Journ. deMath., ser. 5, vol. 2

(1896), p. 111.
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precisely as convergent series, this property being a requisite for

satisfactory application to differential equations.

In our preceding exposition of BoreVs theory, we have intro

duced his chief integral by a method which permits of expansion

in various directions. Le Roy in his very excellent thesis *
suggests

a change of the function in Laplace s integral which greatly en

larges the applicability f of BorePs method without essentially

changing its character. Let the initial series (I) be first written

and then replace the second factor in each term by

T(np +
P o

This gives for the formal equivalent of the series the integral

(12)
-

f e- /p
zl/p- l

F(z.r)dz,
P Jo

in which the associated function is now

The number p remains to be fixed. If the series (I) is divergent,

there is a critical value of p such that any smaller value of p \-

gives an associated series having a zero radius of convergence, }

while a larger value gives one with an infinite radius of conver- /

gence. This critical value p may be said to gauge or measure

* Annalesde Toulouse, ser. 2, vol. 2 (1900), p. 416.

t Since this was written, a very interesting application of Le Roy s idea to

differential equations has been made by Maillet, Ann. de V EC. Nor., ser. 3, vol.

20 (1893), p. 487 ff.
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the degree of divergence of the series. For the divergent series

treated by Borel, p = 1. If p = 0, the series (I) has a finite

radius of convergence. On the other hand, when p = oo, Le Roy s

integral can not be applied, but it may be conjectured that such

cases will be of very rare occurrence. Le Roy proposes to employ
the integral when the associated series is convergent for p = p and

when also its circle of convergence has a finite radius and is

not a natural boundary. The function obtained from (12) will

be unique, and he shows that the series which are summable by
its use like the series of Bord, can be manipulated as convergent

series. One might also inquire whether, in case (13) diverges for

p = p and we take p &amp;gt; p ,
we shall not get a unique result irre

spective of the value of p.

Other forms of integrals may also be selected for the summa

tion of the series, as for example,*

f(z)F(zx)dz,

F(zx)

To generate the given series (I) we must so select/ (x) and F(zx)

that

Borel chooses for f(z) the exponential function, making in conse

quence F(zx), his associated series, dependent only upon the given

series. Hence his process is called very appropriately the ex

ponential method of summation. Stieltjes, f on the other hand,

with his continued fraction arrives at an integral in which F(u) is

the fixed function and/ (3) is the variable function dependent on

the series given. For the fixed function he takes

F(zx)
= - = 1 + *x + z

2x2 + .

.,

*Cf. Le Boy, toe. cit., pp. 414-415.

t Loc. cit.
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so that

(14) a.- fJo z
n
dz.

At first sight this choice of functions would seem to be a very desir

able one, for the function defined by the divergent series is obtained

in the familiar form

Upon examination, however, it turns out to be otherwise. For

suppose the divergent series to be given and f(z) is to be found.

The problem is then a very difficult one, that of the inversion of

the integral (14) when a
n

is given for all values of n. This is

what Stieltjes terms &quot; the problem of the moments.&quot; It does not

admit of a unique solution, for Stieltjes himself* gives a function,

f(z) e~v
2

sin \/z,

which will make a
n
= for all values of n. If the supplementary

condition is imposed that f(z) shall not be negative between the

limits of integration, only a single solution f(z) is possible, but

the divergent series is thereby restricted to belong to that class

which Stieltjes derives naturally and elegantly by the considera

tion of his continued fraction.

Thus far our attention has been confined exclusively to integrals

in which one of the limits of integration is infinite. There are,

however, advantages in using appropriate integrals having both

limits finite, at least if the given series is convergent and the

integral is used for the purpose of analytic continuation. In

particular, the integral

(16) .

/(,-)

should be noted, to which Hadamard has drawn attention in his

thesis.f This falls under Vallee-Poussin s theorem when V(z) is

*&*.*., 55.

f Journ. de Math., ser. 4, vol. 8 (1892), pp. 158-160.
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continuous along the path of integration and when also F(u) is

analytic in u = zx for all values of z upon the path of integration

and for values of x in some specified region of the x-plane. If,

as we suppose, the path is rectilinear, the values of x to be ex

cluded are evidently those which lie on the prolongations of the

vectors from the origin to the singular points of F(x). The

region of convergence of (16) is consequently a star, whose boun

dary consists of prolongation of these vectors.* Thus Hadamard s

integral, when applied to the analytic continuation of a function,

is superior to Borel s in the extent of its
&quot;region

of summability.&quot;

This is illustrated in Le Roy s thesis f with the very familiar series :

r ~ 2-4 2/i

Here the coefficient of xn is

z
ndz

Y/z(\
- Z

)

so that

/(.&amp;lt;)=:

r &quot;z

Since F(zx) = 1/(1 zx), the region of summability is the entire

plane of x with the exception of the part of the real axis between

x = 1 and x = oo. BorePs polygon of summability for the series,

on the other hand, is only the half plane lying to the left of a

perpendicular to the real axis through the point x = 1.

Much, it seems to me, can yet be done in following up the use

of Hadamard s integral. One special case has been studied already

by Le Roy, in which the (n 4- l)th coefficient of (I) has the form

.- f
Jo

pi* This conclusion also holds if only / V(z)dz is an absolutely convergent inte

gral, as is shown by Hadamard.

f pi 411.
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The series therefore defines a function

XI ^1 ,JX

which is analytic over the entire plane except along the real axis

between x = 1 and x = oo. The path of integration may also

permit of deformation so as to show that the cut between the

points is not an essential cut. It is interesting to note that if

&amp;lt;j)(z)
is positive between and 1, the primary branch of the func

tion has only real roots which are, moreover, greater than 1.*

LECTURE 3. On the Determination of the Singularities of Func

tions Defined by Power Series.

Up to the present time comparatively little successful work has

been done in determining the singularities of functions defined by

power series, and the little which has been done relates mostly to

singularities upon the circle of convergence. Work of this special

nature I shall omit from consideration here, thus passing over the

memoirs of Fabry, and I shall call your attention to the literature

which treats of the singularities in a wider domain.

The most fundamental and practical result yet obtained is

undoubtedly a brilliant theorem of Hadamardfi in the wake of

which a number of other interesting memoirs have followed.

This theorem is as follows :

If two analytic functions are defined by the convergent power series

(1) &amp;lt;()

= -f !
+ a

2
x2 + -,

(2) +(*)-*, + bp + bf*+,
the only singularities of the function ^
(3) fix) = a 6 + afrx + a&x

2 + . -

loill be points whose affixes 7^.
are the product of affixes of the singu

lar points a
i
and 0. of the first two functions.

*Le Roy, toe. cit., pp. 330-331.

&quot;Me/a Math., vol. 22 (1898), p. 55.
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The possibility that x = should, in addition, be a singular

point has been pointed out since by Lindelof.

Although Hadamard s proof of the theorem is not a compli
cated one, I shall present here a still simpler proofgiven by Borel*
Let R and R be the radii of convergence of (1) and (2) respec

tively, and take a number p such that
R/p&amp;gt;l/R . If then

|

*x
|

^
| px I

&amp;lt;
R and x

&amp;gt; I/R ,
the product of $(zx) and

ty(l/x) can be developed into a Laurent s power series which is

valid in a circular ring in the x-plane, having its center at the

origin and the outer and inner radii R/p and l/R respectively.
In this product the absolute term is obviously

(4) A*) = a ^ + &quot;A* + &* +.
Consider now the integral

ill which c is a closed path surrounding the origin and contained

within the circular ring. As long as z in its plane lies within a

circle of radius p &amp;lt;
RR

, having its center in the origin, the

integral will surely define a function of z, and this function is

evidently equal to the residue of the integrand for x 0, which
is

/(*).

We shall now seek to extend this function by varying z and at

^
the same time deforming appropriately the path of integration. By
^bhe theorem of Vallee Poussin quoted in Lecture 2, the integral
will continue to represent an analytic function of z, provided at

every stage the integrand remains analytic in x and z
;
x being

any point upon the path of integration. Now the values to be

avoided are clearly the singular points of the functions
&amp;lt;l&amp;gt;(zx)

and

I ; namely the points :

*JBull. de la Soc. Math, de France, vol. 26 (1898), pp. 238-248.

An interesting proof in multi case
&quot;

is given without the use of integrals by
Pincherle in the Rendiconto delta R. Acead. delle Scienze di Bologna, new ser., vol.

3 (1*98-9), PP- 67-74.
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ZX =., X =
1

K
The points x = 1 ft. lie within the circle (1/-R )

which is the inner

circumference of the ring, while the points x = OL. Z before the

variation of z lie without the outer circumference (R/p). For

simplicity of presentation it may be convenient to assume at first

that these points form an aggregate

of isolated points. Suppose then

that z follows any path in its plane

emerging from the circle
(/&amp;gt;).

Then

the points aJz describe certain cor

responding paths which we will

mark in the cc-plane. At the same

time the contour c may be deformed
ff

*/z

continuously so as to recede before

the points a. !z without sweeping

over any point 1//3., provided merely that ajz never collides with

a point 1//9. ;
that is, z must never pass through a point afi..

Now when z is held fixed, a deformation in the contour c, subject

of course to the condition indicated, produces no change in the value

of the integral f(z), since the integrand is holomorphic between

the initial and deformed paths. On the other hand, when the

path is kept fixed and z is varied, we have the analytic continu

ation of
tf\z) in accordance with the theorem of Vallee Poussin.

By the two changes togethei\/(s) may be continued over the entire

plane of z with the exception of the points a./Qy
=

7^..
To these

should, of course, be added z oc, also z = as a possible singular

point for any branch off(z) except the initial branch.

It should be observed that y.. is shown to be a potential rather

than an actual singular point. When, however, it is such a point,

the character of the point depends in general solely upon the nature

of the singularities a. and
/i^.

for (1) and (2) respectively. This fact

was noticed by Borel and demonstrated in the following manner.

Let

&amp;lt; 4- &amp;lt;B + ct? + - -
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be any convergent series defining a function ^(x) which is regu
lar at a.. Then

&amp;lt;f&amp;gt;2(x)
= ^(x) -f

&amp;lt;f&amp;gt;(x)

is a function which has at

a. the same singularity as
&amp;lt;f&amp;gt;(x).

The combination of the series

for
&amp;lt;j)z(x) and for -^(x) by Hadamard s process gives the function

/2(x)
=

(a + c )6 + (a.+c^x + K+
in which

/iOO = CA + C
i
6i^ + c^as

2
-f

Now since ^(JG) is regular at a., when compounded with
-^(a;)

it must give a function /j(&) which is regular at */... It follows

that f2(x) and f(x) have the same singularity at y... Thus the

nature of this singular point is not altered by any change in
&amp;lt;f&amp;gt;(x)

or ^r(#) which does not affect the character of the points a. and /?..

It depends therefore solely upon the character of the singularities

compounded.

Complications arise only when there is a second pair of singu

larities a
k , /3

{
such that

y..
=

aft
= a

k/3r

Clearly the resultant singularity is then dependent upon both

pairs. Their effects may be so superimposed as to create an ugly

singularity, or they may, on the other hand, so neutralize each

other that
7^.

is a regular point. Very simple examples of the

latter occurrence can be easily given. It seems probable that

when 7t
.. is but once a product of an a by a

,
it must always be

a singular point, but this has not yet been proved. Its demon

stration will greatly enhance the value and applicability of Hada-

mard s theorem, for then it can be stated in numerous cases, not

what the singular points offlx) may be, but what they actually are.

A detailed study of the nature of the dependence of the singu

larity 7r upon a. and /3. would probably be both interesting and

profitable. Borel examines the case in which a. and
/^

are poles of

any orders, p and
5-,

and shows that y
tj

is then a pole of order

p _|_ q l. It can, furthermore, be easily shown that whenever

a. is a pole of the first order, 7^ is the same kind of singular point
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as ft.. For suppose that we put a. = 1
,
which may be done without

loss of generality. The principal part of $(:?) at the pole a. is then

and the composition of this with ^(x) gives for the corresponding

component of f(x)

- A
i (bQ + bfc + 6,.r

2 + ).

Hence the singularities y
tj

and ft
j

differ by a multiplicative

constant.

Only one other general fact concerning the composition of sin

gularities seems to be known. Borel proves that if the functions

&amp;lt;t&amp;gt;(x)

and
&quot;^(x)

are one-valued at a. and ft. respectively, f(x) is

also one-valued at 7
i;

. Thus when two one-valued functions are

compounded, the resultant function is also one-valued. But

this statement, as he himself points out, must be correctly con

strued and will not necessarily hold true when the singular points

of the two given functions are not sets of isolated points but con

dense in infinite number along curves. To construct an example
in which /(.?) in not one-valued, Borel makes use of the fact,

now so well known, that the decision whether the circle of con

vergence is or is not a natural boundary of a given series depends

upon the arguments of its coefficients. If, for instance, we take

the series

which has a radius of convergence equal to 1, by a proper choice

of the arguments n
the circle of convergence can be made a natu

ral boundarv. Put now

(6) 1/1 _ x = c + c
t
x + c

2
or + ,

in which the coefficients are necessarily real. Clearly the unit

circle will be a natural boundary for

(j&amp;gt;x

= c + cx -f c e-x - + . . -
.
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and for

^(ic
)
= 1 + e-i0

*x 4- e~ ie
*x

2
-f

Yet the function f(x) which is derived from these two one-

valued functions by Hadamard s process is the two-valued func

tion (6) which exists over the entire plane of x.

I have dwelt at some length upon Hadamard?8 theorem and its

consequences because of their evident interest and importance. It

is worthy of note that for analytic functions defined by power
series the first great advance in the determination of the singu

larities over their entire domain has been made by methods that

are roughly parallel to those currently employed in the considera

tion of their convergence. The convergence of series is indeed

too difficult a question to be settled by any one rule or by any
finite set of rules, but the methods of comparison with series known

to be convergent have been found to be not only most efficient

but also adequate for most practical purposes. In somewhat

similar fashion Hadamard s theorem will determine the singular

points of numerous functions by linking them with other series,

of which the singularities are known.

One of the simplest applications of this theorem is obtained by

compounding a given series

(7) a 4- ap 4- 2
^2 + v

with itself once, twice, -,
to m times. All the singularities of

the resulting series

(8) aj 4- a[x + a\tf + . . -

(t
=

1, 2, , m),

except possibly x = and x = oo, are included among the points

obtained by multiplying i affixes of the singular points of (7)

among themselves in all possible ways. If the m series (8) are

multiplied each by a constant k
{
and are then added, a new series

(9) G(a )+G(a&amp;gt;+q

is obtained, in which G(u) denotes the polynomial^ 4- 4- k
n
u
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This function has no singular points other than those which are

possible for the m series from which it was derived. &quot;When r

different series

&amp;lt;7 4- cijX 4- a
2
x2

4- ,

r 4- ^ 4- /y^ 4- ,

are used, a similar conclusion is reached for the series

where G denotes a polynomial in which the constant term is lacking.

These results are of particular interest when applied to the

series

(10) 1 + x 4- 2x2

4- . 4 nxn
4- - -

and

(11) I + X +Y + - +
?+&quot;.

which are the expansions of 1 4- a?/(l a;)

2 and log (1 -f x). Since

these functions have only one singular point, x = 1, in the finite

plane, the only possible singularities of

are x 0, 1, oo.*

The continued repetition of the above process for combining
series leads naturally to a consideration of series of the form

(12) 2P(a&amp;gt;&quot;

in which a convergent power series P(u) appears in place of the

polynomial G(u). Various theorems concerning cases of this

*
Obviously a constant term can be included now in the polynomial G(T?, l/).
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series have been given recently by Lean* Le Roy^ Dexaint,$

Lindelof, Ford
\\
and Faberfl though the proof of some of these

theorems has no direct relation to Hadamard s theorem. The

importance of such work is, however, apparent, inasmuch as nu

merous series which occur in analysis can be put into the form

under consideration, as for example 2(sin 7r/n)x
n

.

Three cases must be distinguished according as the radius of

convergence of the initial series (7) is less than, equal to, or

greater than 1. If the radius is less than 1, the singular point

nearest to the origin has a modulus less than 1, and the continued

multiplication of the affix of the point by itself gives a series of

points which approach indefinitely close to the origin. The pre

sumption, therefore, would naturally be that the series (12) is then

divergent, but this is very far from being always true, as will be

seen at once by referring to the series 2
(or&quot;

sin ajand 2(#
w
cos a

n)

in which a
n

is real. The applicability of Hadamard s theorem

consequently ceases.

The case in which the radius of convergence of (7) is greater

than 1 has been investigated very recently by Desaint. In this case

the expected theorem is obtained. If, namely, P(u) is a conver

gent series without a constant term, 2P(an)a
n
defines a function

which can have no singular points, besides x = and x oo,

than those which result from the multiplication of the affixes of

the singular points among themselves in all possible ways and to

any number of times.** Demint s proof is based upon the fact

that 2P(an)s
n
,
after the omission of a suitable number of terms,

can be expressed in the form

* Journ. de Math., ser. 5, vol. 5 (1899), p. 365.

fioc. eft.

J Journ. de Math., ser. 5, vol. 8 (1902), p. 433.

g Ada Societatis Sdentiarum Fennicce, vol. 31 (1902).

II Journ. de Math., ser. 5, vol. 9 (1903), p. 223.

^Math. Ann., vol. 57 (1903), p. 369.

** This is a somewhat sharper statement of the result than that given by De-

saint. In his theorem x= 1 is given as a possible singular point, but this, as

appears from the proof to be given here, is due solely to the admission of a con

stant term into P(u). He also fails to note that z= may be a singular point.
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mm /(&amp;lt;*)

in which f(t) is the function defined by (7) for x =
t,

c is an ap

propriately chosen contour, and c
n
denotes the nth coefficient of

P(u) = cji + c
t
u* + . . ,

Although his proof is essentially simple in character, I shall give

here a new and simpler proof, based directly upon Hadamard s

theorem.

Place first

ffr) = aj + a[x -f ap + .... (t
=

2, 3,
. .

.),

and consider the expression

/ + .+ ,/.+ ,(*)+

in which n denotes some fixed integer. If r&amp;gt; 1 denotes the

radius of convergence of the fundamental series (7), the radius of

fj(x) will be r . Describe about the origin a circle (r ) having a

radius r
&amp;lt;

?
&amp;gt;n

. If a sufficient number of initial terms be cut off in

each of the series,

the maximum absolute values of the remainders within or upon
the circle (r )

can be made as small as is desired. Suppose then

that after m terms of each have been removed, the remainders

do not exceed

-n n+1 f2nt
,

t
, ,

t

respectively, in which e is some small positive number. Let us

now substitute in Hadamard s integral
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/

J.
any two of the functions (13) for $ and

Put for example

and choose the unit circle as the path of integration. Then if

||=r ,
the absolute values of the arguments of the series

&amp;lt;j&amp;gt;(zx)

and
A/r(l/cc)

will be less than their radii of convergence since

|

as
|

= 1 and r
&amp;gt;

1. The conditions for the existence of Hada-
mard s integral are therefore fulfilled. Since also

we have

But by Hadamard s theorem F(z) r
2n+i+i (z),

and hence

(14) K(z)|&amp;lt;e

j

(II^O,

for all values of i from 2n to 4n inclusive. The reasoning can

now be repeated with 2n in place of n, and so on
;
therefore (14)

is true for all values of i= n.

Thus far the value of e has remained arbitrary. Let its value

now be taken less than the radius of convergence of P (u). Then

by (14) the series

(15) c + cn+1rn+1 (x) + ...

will be uniformly convergent in (r ). Since, furthermore, all the

component series rn+i (i
= 0, 1, 2, )

are likewise so convergent,

by a fundamental and familiar theorem of Weierstrass * the terms

of the collective series (15) may be rearranged into an ordinary

series in ascending powers of x. But this rearrangement gives

* Harkness and Morley s Introduction to the Theory of Analytic Functions, p. 134.



DIVERGENT SERIES AND CONTINUED FRACTIONS. 117

or the remainder after the (m l)th power of x in

(16) P(.y - cj(x) - cJ2(x)
----- c^f

j=0

Now the series (15) before its rearrangement was a uniformly

convergent series of analytic functions and defined a function

which was analytic within
(? ).

It follows that (16) is also

analytic within this circle, and hence

has no singularities within this circle except those of

/,(*), /*(*)&amp;gt; ,/.-,()

But the radius of ( )
was any quantity short of ?

&amp;gt;n

,
and this con

clusion therefore holds within a circle having its center in the

origin and a radius equal to r
n

. By increasing n indefinitely, the

theorem of Desaint results. It is evident also that if fi(z), and

therefore
/&amp;gt;(#)&amp;gt; represents a one-valued function, 2P(aJ#

n must

also be such a function.

There remains yet for consideration the third class of cases in

which the radius of convergence of the fundamental series is 1.

If upon the circle of convergence there is any singular point with

an incommensurable argument, the continued multiplication of its

affix by itself gives a set of points everywhere dense upon the

circle of convergence. It is therefore to be expected that this

circle will be, in general, a natural boundary for 2P(an)#
n
,
and

accordingly the cases which will be of chief interest will be those

in which all the singular points upon the circle have commensur

able arguments. A simple case of this character is obtained

when either (10) or (11) is chosen as the generating series. If

the former be selected, the resulting series has the form 2P(?i)aj
n

.

This has a special interest inasmuch as its study has proved to
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be of profit both for the theory of analytic continuation and of

divergent series. The reason becomes apparent when the state

ment is made that it is possible to throw any Taylor s series,

2a
n
o?
w
,
whether convergent or divergent, into the particular form

2P(w)jc
n
,
and in an infinite number of ways. This fact follows

as a corollary of a very general theorem of Mittag-Leffler* which,

when restricted to the special case before us, establishes the exist

ence of a function P(x), which is holomorphic over the entire

finite plane and assumes the pre-assigned values a
,
a

l9 2,
in

the points x = 0, 1, 2, -. Consequently the character of the

function defined by 2P(n)x
n

is made to depend upon the behavior

of P(x) as x approaches oo.

Inasmuch as 2P(Vi)of is perfectly general, limitations must be

imposed upon P(u) in any attempt to extend Hadamard s theorem

to this series. But whenever the theorem is applicable, the only

possible singularities of
2P(n)o3&quot;

are x = 0, 1, oo. Lean f estab

lishes the correctness of this result when P(u) is an entire function

of order less than 1,J giving also a more general theorem concern

ing 2P(an)of of which this is a special case. The like conclusion

holds concerning the singular points of 2P(l/n)of , provided only

that P(x) is holomorphic at the origin. ||

Very recently these results of Lean have been proved more

simply by Faber, but in a more restricted form, an artificial cut

being drawn from x = 1 to x = oo to obtain a one valued func

tion. In addition, Faber shows that if for any prescribed e and

for a sufficiently large r the inequality

(17)

* Acta Math., vol. 4 (1884), p. 53, theorem D. For a reference to this theorem

I am indebted to Professor Osgood. Theorem 2 of Desaint s memoir (p. 438)

is in contradiction with this, but his proof is here inadequate since rk (p. 440) has

not necessarily a lower limit.

\Loc. cit., p. 418.

JHe also shows that 2P(n)o;
n

is then a one-valued function.

%Loc. cit., p. 417. See also Butt, de la Soc. Math, de France, vol. 26 (1898),

p. 267.

\\Loc. cit., p. 418
;
see also p. 407.



DIVERGENT SERIES AND CONTINUED FRACTIONS. 119

is fulfilled, the point x = 1 must be an essential singularity, and

the function represented by ZP(n)x
n
is consequently one-valued.*

Conversely, if f(x) is a one-valued function which has only one

singular point, and if that point is an essential singularity, f(x)

can be expressed in the form
2P(&amp;gt;i).e

u
,
in which P(u) is an entire

function satisfying (17). More generally, if there are I essential

singularities x lt ,
x

l
and no other singular points in the finite

plane, the coefficient of x* must be

in which P^n), -

&amp;gt;,

P
t(n) are entire functions of the nature above

specified and in which Km
\/a&amp;gt;n

= 0. This converse has an espe

cial interest because as yet few theorems have been discovered

giving the necessary form of the coefficients of a power series for

an analytic function with prescribed functional properties.

Other theorems concerning ?LP(n)x
n have recently been derived

without requiring that P(n) shall be holomorphic over the entire

plane.

As a sample of these I shall cite in conclusion the following

theorem of Linddof: f

If P(n) represents a function fulfilling the following conditions :

1. P(z) is analytic for every point of the complex plane

z = r -j- it for which r = (except possibly at the origin, for

which P(z) has a determinate value).

2. A number e being arbitrarily given, it is possible to find

another number R such that by putting z = re
1* we will have for

r&amp;gt;=B

* Le Roy three years earlier had noted this conclusion when P(x) is an entire

function whose &quot;apparent order&quot; is less than 1
;

loc. cit, p. 348, footnote.

Faber does not seem to be aware of Le Roy s statement. The difference between

the two statements is slight but becomes important in formulating the new and

interesting converse which Faber adds.

fioc. cit., 13.
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then the principal branch of the function 2.P(n)3
n
will be holo-

morphic throughout the complex plane excepting possibly on the

segment (1, -f oo
)
of the real axis. Furthermore, the function

approaches as a limit when x tends toward the point at infinity

along any ray having an argument between and 2?r.

LECTURE IV. On /Series of Polynomials and of Rational

Fractions.

In the last two lectures I have spoken of the use of integrals for

the study of analytic extension and of divergent series. The topic

of to-day s lecture is the representation of functions by means of

series of polynomials and of rational fractions. This subject forms

a very natural transition to the succeeding lecture upon continued

fractions, since an algebraic continued fraction is in reality noth

ing but a series of rational fractions advantageously chosen for the

study of a corresponding function which, when known, is com

monly given in the form of a power series.

The literature relating directly or indirectly to series of poly

nomials and of rational fractions is a vast one, with many ramifi

cations. Thus in one direction there are various researches of

importance upon the non-uniform convergence of series of contin

uous functions, and in this connection I may refer particularly to

the recent work of Osgood and Baire, an excellent report of which

is contained in Schonflies* Bericht iiber die Mengenlehre.* An
other part of the field comprises numerous memoirs devoted to

special series of polynomials and rational fractions. Quite re

cently a more systematic and general study has been begun by

Borely Mittag-Leffler ,
and others, and it is to this that I am to

call your especial attention.

Two very familiar facts, both discovered by Weierstrass, may
be said to be the origin of this study. I refer, of course, to the

theorem that any function which is continuous in a given finite

interval of the real axis can be expressed in that interval as an

* Jahresbericht der deutschen Mathematilcer- Vereiniyung, vol. 8, pp. 224-241.
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absolutely and uniformly convergent series of polynomials,* and,

secondly, to the possibility that a single series of rational fractions

may represent two or more distinct analytic functions in different

portions of its domain of convergence. A notable advance upon
the theorem first mentioned was made by Runge^ in 1884, who

proved that any one-valued analytic function throughout the do

main of its existence can be represented by a series of rational ;

functions; furthermore, this domain may be of any shape what- !

soever, provided only it forms a two-dimensional continuum.

Range s proof of these important results is not only worthy of

careful study, but contains also certain conclusions which were an

nounced again by Painleve% in 1898, though without proof.

The conclusions reached were as follows :

Let D be a domain consisting of any number of separate pieces

of the complex plane, in each of which we will suppose an analytic

function to be defined. The functions thus defined can be, at

pleasure, either distinct functions or parts of one or more func

tions. In any case a series of rational functions can be formed

which will converge absolutely and uniformly in any region

lying in the interior of D and represent in each separate piece

the prescribed function. Furthermore, this representation can

be made in an infinite number of ways. Let the ensemble of

the points excluded from D be represented by E. When E con

sists of a single connected continuum of any sort, whether linear

or areal, any point a of E can be arbitrarily selected, and the

function can be expanded into the series

&quot; Ueber die analytische Darstellbarkeit sogenannter willkiirlicher Functionen

einer reellen Veriinderlichen
;
Berliner Sitzungsberichte, 1885, p. 633 or Werke,

vol. 3, p. 1. Simple proofs of the theorem have been given by Lebesque, Butt,

des Sciences Math., ser. 2, vol. 22 (1898), p. 278, and by Mittag-Leffler, Rendicvnti

di Palermo, vol. 14 (1900), p. 217, with an extension to functions of two variables.

In this connection see Painleve&quot;snote in the Compt. Rend., vol. 126 (1898), p. 459.

Mcta Math., vol. 6, p. 229.

J Compt. Rend., vol. 126, pp. 201 and 318.
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in which G
n [1 /(x )]

denotes a polynomial in 1
/ (x a). If, in

particular, the continuum E contains the point x oo, an ordinary

series of polynomials, 26r
n(V), can be employed. When ^con

sists of a finite number of separate pieces (or isolated points), the

expansion can be put under the form

(D(L-\ + jr
\x - aj

~

in which a
A , ,

a are points arbitrarily chosen in the separate

pieces.

In the familiar case in which only a single analytic function
%

(1) a
Q + aj(x a)+ a

2 a)
2 +

is given, it is natural to seek a series of polynomials having the

greatest possible domain of convergence. Unless the function is

one-valued, the most convenient domain is in general the star of

Mittag-Leffler. This is constructed for the series (1) by first marking

on each ray which terminates in a the nearest singular point and then

obliterating the portion of the ray beyond this point. The region

which remains when this has been done is a star having a for its

center. Mittag-Leffler
* shows that within the star the given ana

lytic function can be represented by a series of polynomials in

which the coefficients of the polynomials depend only upon the

value of the function and its derivatives at a, t or, in other words,

upon the coefficients of (1). If, in short, we put

and

. n
Ai=0 A2=0 A,v

=0 * U

* Ada Math., vol/23 (1899), p. 43
;
vol. 24, pp. 183, 205

;
vol. 26, p. 353. A

good summary is found in the Proc. of the London Math. Soc., vol. 32 (1900), pp.

72-78.

t In this respect his work is superior to that of Runge and others. Range,

for example, presupposes a knowledge of the function at an infinite number of

points.
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then 5^ ^r
n(#) is a series which converges uniformly in any region

=a

lying, with its boundary, entirely in the interior of the star. The

series may also . converge outside the star. Borel* has shown,

furthermore, that the series of Mittay-Leffler is not the only possi

ble one, but there is an infinity of polynomial series sharing the

same property within the star.

It will be noticed that the construction of the series of Mittag-

Leffler is in no wise dependent upon the convergence of the initial

. power series. In certain cases, at least, the polynomial series con

verges when the given series (1) is itself divergent. It is natural

therefore to look for a theory of divergent series based upon con

vergent series of polynomials. As yet, however, no such theory

has been invented. One of the chief difficulties in the way is that

the polynomial series do not afford a unique mode of representing

an analytic function. Xow the difference between any two series

of polynomials for the same function in an assigned area is a third

series which vanishes at every point of the area, though the sep

arate terms do not. This is a decidedly awkward point, and

occasions difficulty in proving or disproving the identity of two

functions expressed by polynomial series. It is true, indeed, that

this difficulty will scarcely present itself when we start with a con

vergent power series which is to be continued analytically, the

polynomial series then giving continuations of a common function.

But when the series (1) is divergent and there is no known func

tion which it represents, it is an open question whether the differ

ent series of polynomials which are obtained from (1) by applica

tion of diverse laws will furnish the same or different functions.

If different functions, is there any ground for preferring one series

of polynomials to another ?

Up to the present time two essentially different principles seem

to have been followed in the formation of series of polynomials.

In the work of Rung?, Borel, Painlei-e and Mittag-Leffler the co

efficients in the polynomials vary with the character of the ana-

*Ann. de r EC. Sor., ser. 2, vol. 16 (1899), p. 132, or Les Series divergentes,

p. 171.
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lytic function to be represented ;
for example, in the polynomials

of Mittag-Leffler they are functions of the coefficients of the given

element, ^an
xn

. By appropriately choosing the coefficients of the

polynomials these writers obtain a very large region of conver

gence and at the same time are able to greatly vary its shape. On
the other hand, the series which are met in the practical branches

of mathematics for instance, in the theory of zonal harmonics

have the form

(2) c &amp;lt;y

o(aO + c, &amp;lt;?,(*) + o
tGJx) +

in which the polynomials Cr
n(x) are entirely independent of the

function represented, while the c
{ vary. The polynomials them

selves are selected according to the shape of the region of con

vergence. Thus if the region is a circle, we may put

and we have then the ordinary Taylor s series. Or if it be an

ellipse having the foci 1, we may take for our polynomials

either the successive zonal harmonics or a second succession of

polynomials (also called Legendre s polynomials) which are con

nected by the recurrent relation :

(3) G^x) - 2x(2n + 3) Gn+i(x) + 4(n + !)(? = 0.

In a recent number of the Mathematische Annalen (July, 1903)
Faber has considered this second class of polynomials from a some

what general point of view and has demonstrated that any function

which is holomorphic within a closed branch of a single analytic

curve, as for example an ellipse or a lemniscate of one oval,

can be expressed by a series of the form (2). The properties

of his series are similar to those of Taylor s series. In the

case of the latter, to ascertain whether 2a
n
cc
n

converges in the

interior of a circle having its center in the origin and a

radius R, we have only to determine the maximum modulus of

a point of condensation of the set of points v/aB (n = 1, 2, 3, ).

If it is exactly equal to l/R, the circle (R) is the circle of con-
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vergence, and there is at least one singularity upon its circumfer

ence. If, on the other hand, it is greater or less than 1;J2, the

series will have a smaller or a larger circle of convergence. So also

to the given branch of the analytic curve there corresponds a

certain critical value. When this is exactly equal to the upper

limit of ]/cn |

in Faber s series, the given analytic branch is the

curve of convergence. At every point within, the series converges,

while it diverges at every exterior point, and upon the curve there

must lie at least one singular point of the function defined by (2).

If, however, the upper limit is greater or less than the critical

value, we consider a certain series of simple, closed analytic curves,

(as for example a series of confocal ellipses), among which the given

analytic branch must, of course, be included. The curve of con

vergence is then fixed by the reciprocal of the upper limit of

|
y

x

cn | provided this limit is not too large. Moreover, as in the

case of Taylor s series, the function cannot vanish identically un

less every c
n
== 0, and in consequence the series vanishes identi

cally. It is therefore impossible that the same function shall be

represented by two different series of the given form.

In view of the last mentioned fact it might be of especial inter

est to apply this class of polynomial series to the study of diver

gent series.

In the most familiar and useful polynomial series the successive

polynomials are connected by a linear law of recurrence,

(4) *,&amp;lt;?+.,(*)
+ *, &amp;lt;?+,-,

+ + W*) = 0,

in which the coefficients k. are polynomials in x and n. Thus the

zonal harmonics have as their law of recurrence

Many series of this nature are also included in the class con

sidered by Faber. The form of the region of convergence has

been determined by Poincare *
upon the hypothesis that equation

*Amer. Journ. qf Math., vol. 7 (1885), p. 243.
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(4) has a limiting form for n = oo. Let the equation be first

divided through by k
Q)
and then denote the limits of the successive

coefficients for n = oo by ^(x), k
2(x), &m(^) Construct next

the auxiliary equation

(5) z
m + \(x)z

m- 1 + k
2(x)z

n-z + - + km(x)
= 0.

Except for particular values of x there will be one root of this

equation which has a larger modulus than any other. Let r(x)

be that root. Poinoar^* shows that with increasing n the ratio

Grn(%)l Grn-\(x)
wiU approach, in general, this root as its limit.

The region of convergence is therefore confined by a curve of the

form C \r(x)\,
and the value of C for the series (2) is to be

taken equal to the radius of convergence of 2c
n?/

n
.f

By way of illustration let us take the series 2c
n 6rn(o;) in which

the polynomial obeys the law

*More specifically, Poincare&quot; proves that if no two roots of (5) are of equal

modulus, QH(x)}Gni(x) has always a limit, and this limit is equal to some root of

(5), usually the one of greatest modulus.

f Poincare has given no proof that the series (2) will converge at those points

within the curve
| r(x) \

=
(7, for which there are two or more distinct roots of

(5) having a common modulus greater than the moduli of the remaining roots.

Thus in the example which is quoted below (p. 127), these are the points of the

real axis which are included between -f- 1 and 1. This gap in Poincare s theory

can be filled in by the following theorem which I have given in the Transactions

of the Amer. Math. Soc., vol. 1 (1900), p. 298: If the coefficients in the series

2Any
n are connected by a recurrent relation having the limiting form

&quot; n ~\~ K\An i ~T~
~T&quot; KmAn m Oj

the series will converge at the worst within a circle whose radius is the recipro

cal of the greatest modulus of any root of the auxiliary equation

Denote this maximum by 7*, irrespective of the number of roots having this maximum

modulus. Then
\An\&amp;lt;M(r+e) (w=l, 2, ... ).

Hence if C is the radius of convergence of 2c,$
n

,
the series 2cnAn will converge

when C^&amp;gt;r. Suppose now that An depends upon x and put A n = Gn (x). It

follows then from my theorem that 2cnGn (x) will always converge when tf&amp;gt; r.

But this is what was to be proved.

At the time of the publication of my work I was not aware of Poincare s article,

and I therefore failed to point out the relation of the two memoirs.
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For n =oc the limiting form of this equation is

or the same as the limiting form for the zonal harmonic. The

auxiliary equation is

S
2 _ 2xz + 1 = 0,

of which the roots are

The curves
|

x i x*
2

1
j

= C are easily seen to be ellipses

having the foci =fc 1. Hence if R is the radius of convergence

of 2c
n #&quot;,

the region of convergence of (2) is the interior of an

ellipse,

|

x =fc vV^l
|

= R.

Poincare also examines such exceptional cases as that which is

specified by relation (3), which has no proper limiting form. But

upon this work we can not longer dwell. I wish, however, to

emphasize its fundamental character, inasmuch as many previous,

and even subsequent conclusions concerning the convergence of

series of the form (2) are comprised in Poincar&s result.

Somewhat earlier in the lecture I set forth the arbitrary charac

ter of the function which could be represented by series of poly

nomials and rational fractions. We have seen also how this arbi

trary element was entirely eradicated by confining ourselves to

polynomials which obey a linear law of recurrence. In the remain

der of this lecture I wish to develop the consequences of restrict

ing a series of rational fractions in the manner supposed by Borel in

his thesis * and its recent continuation in the Ada Mathematical
Borel seeks to so restrict a series of rational fractions, 2Pfi (#)/JR

n(.r),

as to ensure a connection between the position ofthe poles of its sep

arate terms and the position of the singular points of the function

which the series collectively represents. On this account he assigns

*Ann. de P EC. JVor., ser. 3, vol. 12 (1895), p. 1.

fVol. 24 (1900), p. 309.
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au upper limit to the degrees of P
n (x) and R

n(x). But this is not

enough, and he proceeds therefore to limit the magnitude of the co

efficients in the numerators. On the other hand, he allows any dis

tribution whatsoever for the roots of the denominators, thus leaving

himself at liberty to vary greatly the nature of the function rep

resented.

In his thesis he develops the case

(6)

which had been previously considered by Poincare * and Goursat.-f

To avoid semi-convergent series or, in other words, functions, of

which the character depends not merely upon the position of the

poles an and the values ofA
n
but also upon the order of summation,

the condition is imposed that ^A
n
shall be absolutely convergent.

Then if there is any area of the z plane which contains no poles,

the series (6) must converge within this region. Since further

more it is uniformly convergent in any interior sub-region, it

defines an analytic function within the area. There may be

several such areas separated by lines or regions in which the poles

are everywhere dense. This is precisely the case to be considered

now.

To simplify matters, let us suppose that the poles are every

where dense along certain closed curves of ordinary character,

but nowhere inside the curves. Poincare and Goursat show that

each curve is a natural boundary for the analytic function
&amp;lt;f&amp;gt;(z)

defined by (6) in its interior. BorePs proof is as follows. De

note the component of (6) which corresponds to an by

&quot;

and the remaining part by

* Acta Societatis Fennicce, vol. 12 (1883), p. 341, and Amer. Journ. of Math.

vol. 14 (1892), p. 201.

f Compt. Rend., vol. 94 (1882), p. 715.
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A *
A&quot;

^(2)
=

c^r&amp;lt;
+ ,, F^fe*

It is evident that if
rt
lies within any one of the curves considered,

a
n

is a pole of
(f&amp;gt;(z).

Now when these interior poles condense in in

finite number in the vicinity of any point of the curve, it must,

of course, be a singularity of
&amp;lt;f&amp;gt;(z).

Consider next any one of the

points a
n
which lies upon the boundary but is not a point of con

densation of the interior poles, and let z approach this point along

the normal. Describe a circle upon the line z a
n
as diameter.

If 2 is sufficiently near to a
nJ

the circle will exclude every one of

the points a
t., excepting a

n
which lies upon its boundary. Since

also 2A
n

is absolutely convergent, by increasing r the second

component of &amp;lt;

2(z) may be made less in absolute value than

e/\z a
n

m
,
in which e is an arbitrarily small prescribed quantity.

If, them, H denotes the maximum of the first component of
&amp;lt;/&amp;gt;2(

2
)

as z now moves up to a
n ,
we have

i n

Consequently,

lim
&amp;lt;t&amp;gt;(z) (z

- a
n )
= lim

&amp;lt;f&amp;gt;,(z) (z
- a

a)

m + lim
&amp;lt;f&amp;gt;.2(z)

-

(z
- a

n)

m=Bn .

2=1n

This shows that ^(2) |

increases indefinitely when z approaches

any pole an of the ??ith order along a normal, and removes the pos

sibility that the poles, because they are infinitely thick upon the

curve, may so neutralize one another that the function can be car

ried analytically across the curve at a
n

. As, moreover, we sup

pose the points a
n
of order m to be everywhere dense upon the

curve, it must be a natural boundary.
It is apparent now that the expression (6) continues the initial

function
&amp;lt;f&amp;gt;(z)

across a natural boundary into other regions where

it defines in similar manner other analytic functions with natural

boundaries. But, it may be asked, is there any proper sense in

which these analytic functions may be regarded as a continuation

of one another? Just here Borel steps in and, after imposing
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further conditions, shows that when the function defined by (6)

within some one of the curves is zero, the functions defined within

the other curves must also vanish.* Take m = 1, so that

(7) &amp;lt;0)

= 2 -A- .

v z a
n

By a linear transformation

az 4- b

cz -f d

any interior point of one curve may be taken as the origin and

any interior point of a second curve may be transformed simul

taneously into the point at infinity without changing the character

of the series to be investigated. Now at the origin the successive

coefficients in the expansion of
(f&amp;gt;(z)

into a Taylor s series are the

negative of

(8) 2^, 24 s

,
2-

8&quot;,

&quot;

n &amp;lt; &amp;lt;

while those in the expansion for z = oo are

(9) 24, 2,1._ 24X, ....

Borel proves that when

lim y A n 0,
n=co

the coefficients (9) must vanish if those given in (8) do. Any one

of the analytic functions under discussion is therefore completely

determined by any other, the expression (7) being the intermediary

by which we pass from one to the other.

So far as yet appears, this method of continuing an analytic

function across a natural boundary is of very limited applicability.

Its significance has been made clearer by Borel s later memoir in

the Ada Mathematica. Here the rational fractions are of a less highly

specialized character, but the essential nature of the investigation

can still be exhibited without abandoning the expression (6). Let

I AJ &amp;lt;
1C+

S where u
n
denotes the ?ith term of a convergent series

* Cf. pp. 32-33 of his thesis or pp. 94-98 of his Theorie des fonctions.
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of positive numbers. AVe shall suppose that the poles of the terms of

(6) are everywhere dense over a large portion of the plane, leaving,

however, at least one area free from poles, so that there shall be an

analytic function to continue, though even this is not necessary.

Borel proves that parallel to any assigned direction there will be

an infinity of straight lines, everywhere dense throughout the

plane, along which the series (6) will converge absolutely and

uniformly. The &quot;function defined along these lines is therefore a

continuous one.

The proof of this result is short and simple. Describe about

the poles a as centers circles which have successively the radii

u
n (n

=
1, 2, ).

If there is any point which lies outside all of

these circles, the series (6) must there converge, since at such a

point the absolute value of the nth term is

that is, less than the nth term of a convergent series of positive

numbers. But are there points outside of all the circles ? To

settle this question, take any straight line perpendicular to the

assigned direction and project orthogonally all the circles upon the

line. The total sum of all the projections, 22U
B ,

will be conver

gent. Moreover, by cutting off a sufficient number of terms at

the beginning of (6), the sum of the projections may be made less

than any assigned segment ab of the line. Let JV terms be cut

off for this purpose. Take any point c of the segment which does

not lie upon the projection of any circle nor coincide with the

projection of one of the first ^V poles of (6). At c erect a perpen
dicular to ab. This will be a line parallel to the assigned direc

tion which throughout its entire extent lies without all the circles,

excepting possibly the first A&quot;. Hence the series (6) will con

verge absolutely and uniformly along the line, even though the

line lie infiuitesimally close to some set of poles in the system.

Lastly, because ab was an interval of arbitrary length, these lines

of convergence must be everywhere dense throughout the plane,

obviously forming a non-enumerable aggregate.



132 THE BOSTON COLLOQUIUM.

Since the series is uniformly convergent, it can be integrated

term by term. Clearly also the numerators A. in (6) can be so

conditioned that the term-by-term derivative of (6) shall be

uniformly convergent. Then the derivative of
(f&amp;gt;(z)

is coincident

with the derivative of the series. It is even possible to so choose

the A
i
that the series will be unlimitedly differentiable.

I may add that in any region of the plane there will be an

infinite or, more specifically, a non-enumerable set of points,

through each of which passes an infinite number of lines of con

vergence. If a closed curve is given it will be possible to

approximate as closely as desired to this curve by a rectilinear

polygon, along whose entire length the series converges and defines

a continuous function. Integration around such a polygon gives

for the value of the integral the product of 2i?r into the sum of

the residues of those fractions whose poles lie in the interior of

the polygon. Finally, if we take for axes of x and y two perpen

dicular lines of continuity of &amp;lt;/&amp;gt;(z),

all the lines of uniform continuity

which meet at their intersection will give a common value for
&amp;lt;j&amp;gt; (z\

and the real and imaginary parts of
cf&amp;gt;(z)

will satisfy Laplace s

equation :

d2u dzu

Thus we have in $(%) a species of quasi-monogenic function.

One question Borel has as yet found himself unable to resolve.

If
&amp;lt;j)(z)

= along a finite portion of any line, will the series in

consequence vanish identically ? If this question be answered in

the affirmative, the analogy with an ordinary analytic function

will be still more complete.

Let us now return to the case in which two or more functions

with natural boundaries are defined by (7). The lines of con

tinuity just described form an infinitely thick mesh-work along

which
(f&amp;gt;(z)

can be carried continuously from the one analytic

function into the others. Suppose again that the origin is not a

point of condensation of the poles a
n
so that

&amp;lt;()
can be expanded
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at the origin into a Maclaurin s series Sc^z
1

. Now if a ray is

drawn from the origin through the pole a
n
and the portion of the

ray between a
n
and oo is retained as a cut, the ??*th term of (7) can

be expanded into a series of polynomials

which converges over the plane so cut. The series (7) can there

fore be resolved into a double series

and this expression will be valid on an infinity of rays from the origin

which do not pass through any of the poles. Since, moreover, the

poles are an enumerable set of points, these rays will be infinitely

dense between any two arguments which may be taken. By fur

ther conditioning the A
n ,

Borel is able to rearrange the terms of

the double series so as to form a series of polynomials ^ Qn (
z\

n

in which

and in this way he obtains a series of polynomials which is con

vergent on a dense set of rays through the origin.

It also appears that the polynomial series 2 Qn(z)
can be formed

directly from Sc^ without the intervention of (7). When, there

fore a Maclaurin s series is given which corresponds to such an

expression (7) as is now under discussion, the continuation of the

function can be made along the above set of rays. Now the rays

cut any curve upon which either (7) or ^Qn(z)
defines a continuous

function in a set of points everywhere dense. The value of the

function along the entire curve therefore depends only upon the

coefficients c.
;

/. e., upon the value of the function and its deriva

tives at the origin. It is shown, moreover, that any point of the

plane which is not a point of condensation of the poles a
n may
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be converted by transformation of axes into such an origin.

Finally, Borel gives a case in which the poles may be everywhere

dense over the entire plane, so that the function defined by (7) is

nowhere analytic, and yet its value is determined along the lines

of continuity by the value of the function and its derivatives at

the origin. Here then is a class of non-analytic functions sharing a

most fundamental property in common with the analytic functions!

Is it not then possible, as Borel surmises, that there is a wider

theory of functions, similar in its outlines to the theory of ana

lytic functions and embracing this as a special case? If so, the con

ceptions of Weierstrass and of Meray are capable of generalization.

PART II. ON ALGEBRAIC CONTINUED FRACTIONS.

LECTURE 5. Pad&s Table of Approximates and its

Applications.

Both historically and prospectively one of the most suggestive

and important methods of investigating divergent power series is

by the instrumentality of algebraic continued fractions. It is for

this reason that I have ventured to combine in a single course of

lectures two subjects apparently so unrelated as divergent series

and continued fractions. I shall not, however, confine myself to

the consideration of the latter subject solely with reference to the

theory of divergent series. It is rather my purpose to give some

account of the present status of the theory of algebraic continued

fractions. At the close of the next lecture a bibliography of

memoirs connected with the subject is appended, to which refer

ence is made throughout this lecture and the next by means of

numbers enclosed in square brackets.

By the term algebraic continued fraction is understood, in dis

tinction from a continued fraction with numerical elements, one

in which the elements i. e., the partial numerators and denomi

nators are functions of a single variable x or of several varia

bles [16, a, p. 4]. Although the term algebraic does not seem to
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me to be fortunately chosen, I shall nevertheless accept it and use

it to indicate the class of continued fractions which it is proposed

to consider here.

The first foundations of a theory of continued fractions were

laid by Eider, who early employed them [1, a] to derive from a

given power series

a continued fraction of the form

1 a,x a9
x

(1) b~ + bx+d + b~^+J +
&quot;

A second form, also introduced by Euler *
[46, a] is the more

familiar one

1 + 1 + 1 + 1 +

which was later used by Gau-ss [34] in his celebrated continued1

fraction for F(a, /3, 7, x)jF(a, + 1, 7 + 1, ar).
From this time-

on still other forms were discovered so that it became impossible

to speak of a unique development of a function into a continued!

fraction. Among these forms may be especially mentioned the

continued fraction

(3 ) a.x + b, -f ajc -f 6
2 -j- a..x -f 6 -j-

used by Heine, Tchebychef, and others in approximating to series

in descending powers of x. By the substitution of I/a? for x and

a simple reduction this can be transformed, after the omission of a

factor x
y
into

i r2 2

(3)
a

t + b^ + 2 + b
2
x + ayi? + 6

3 +

The reason for this variety of form and for the occurrence, in

*Pade in his thesis (p. 38) traces it back to Lambert [2, ] and Lagrange,
but Baler s u?e is earlier still.
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particular, of the three types just given is discussed by Pade in

his thesis [16, a] . As this thesis is the foundation for a systematic

study of continued fractions, it will be necessary to give a recapit

ulation of its chief results.

Let

(4) %)-v+v +V+---* (
c
o
=

i)

be any given power series, whether convergent or divergent. If

N
p(x)jDq(x)

denotes an arbitrary rational fraction in which the

numerator and denominator are of the pth and gth degrees respec

tively, there will be p -f q + 1 parameters which can be made to

satisfy an equal number of conditions. Let them be so determined

that the expansion of NJDq
in ascending powers of x shall agree

with (4) for as great a number of terms as possible. In general,

we can equate to zero the first p -f- q + 1 coefficients of the expan
sion of D

q S(x)
N

p
in ascending powers of x, and no more.

Hence, unless N
p
and D

q
have a common divisor, the series for

NJDq agrees with (4) for an equal number of terms, and the

approximation is said to be of the (p -+- q -\- l)th order. In excep
tional cases the order of the approximation may be either greater

or less. Pade examines these exceptional cases and proves strictly

that among all the rational fractions in which the degrees of numer

ator and denominator do not exceed p and q respectively, there

is, taken in its lowest terms, one and only one, the expansion of

which in a series will agree with (4) for a greater number of terms

than any other. Such a rational fraction I shall term an approxi-

vnard of the given series.

The existence of approximants was, of course, well known

before Pade, but no systematic examination of them had been

\made except by Frobenius [13], who determined the important

relations which normally exist between them. Pade goes further,

and arranges the approximants, expressed each in its lowest terms,

into a table of double entry :
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f=l

iC
= c
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mants are the successive convergents.
* Thus a countless manifold

of continued fractions can be formed, any one of which through
its convergents gives the initial series to any required number of

terms and hence defines the series and table uniquely. In all of

Pade s continued fractions the partial numerators are monomials

in x.

The continued fraction is called regular when its partial numer

ators are all of the same degree and likewise its denominators,

certain specified irregularities being admitted in the first one or

two partial fractions. These irregularities disappear when the

continued fraction, as is most usual, commences with the corner

element of the table. (Cf. the continued fractions (2) and (3).)

In a normal table a regular continued fraction can be obtained

in any one of three ways. If we take for the convergents the

approximants which fill a horizontal or vertical line, a continued

fraction is obtained which except for the irregularity permitted

at the outset is of the form (1) given above. If the approxi

mants lie upon the principal diagonal or any parallel line, the con

tinued fraction is of type (3). Lastly, if the convergents lie upon
a stair-like line, proceeding alternately one term horizontally to

the right and one term vertically downward, the continued fraction

is of the familiar form
(2).

When a table is not normal, the approximants which are iden

tical with one another are shown by Fade to fill always a square,

the edges of which are parallel to the borders of the table. When
the square contains (n -f I)

2

elements, the irregularity may be said

to be of the nth order. The vertical, horizontal, diagonal and

stair-like lines give regular continued fractions as before, unless

they cut into one or more of these square blocks of equal approxi

mants. When this happens, certain irregularities appear in the

continued fraction which give rise to various difficulties in the

consideration of matters of convergence and other questions.

On this account it is natural to inquire first whether the con

tinued fraction has or has not a normal character. If it has, the

*This is also tacitly implied in the relations given by Frobenius [13, p. 5].
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existence of the three regular types of continued fractions is as

sured. The necessary and sufficient condition that the table shall

be normal is that no one of the determinants

(a, ^0;
c. = if i

&amp;lt; 0)

shall vanish [16, a, p. 35]. It will be noticed that the determi

nants are of the same sort as those which play so conspicuous a

role in ffadamard s discussion of series representing functions

with polar singularities.

So far as I am aware, the normal character of the table has

been established as yet only in the following cases: (1) for the

exponential series [37] and for (1 -f x)
m when m is not an integer

[35, d] ,f by Fade ;
and (2) for the series of Stidtje*, by myself [45] .

The construction ofPad&s table leads at once to a number ofnew

and important questions. The numerators and the denominators of

the approximants constitute groups of polynomials which it is only

natural to expect will be characterized by common or kindred

properties. The table then affords a suitable basis for the classifi

cation of polynomials. Thus, for example, the polynomials of

f At least half of the table forF(a, 1, y, x) has a normal character. This was

proved incidentally in my thesis [76] by showing that the remainders corre

sponding to approximants on or above the diagonal of the table were all distinct.

The method of conformal representation was there employed, but the same fact

can also be demonstrated very simply by means of Gauss relationes inter contiguas

(formulas (19) and (20) of [34]). The approximants in the other half of my
table (Cf. [76], p. 44) were constructed on different principles from Fade s,

the approximation being made simultaneously with reference to two points,

x= 0and x=oo, but the resulting continued fractions were of the same form

as Padd s. It is noteworthy that the relationes inter contiguas lead to such a

table rather than to the one of Fade s construction.

In the case of F( m, 1, 1, z) = (l + x)
m the half of Fade s table below the

diagonal is also normal, since the reciprocal of the approximants in the lower

half are the approximants in the upper half of the table for

JK 1,1, -*) = (! + *)-.
-

The normal character of the table for e* then follows since e^lim F(gt 1, 1, z/0).
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Legendre and similar polynomials are obtained from the series for

log (1 #)/(! 4- x\ while the numerators and denominators of the

approximants for (1 + a?)&quot;

1 are the hypergeometric polynomials

f\ /-t,
v db m, /A -\- v, .T),

in which ft and z&amp;gt; are integers, or

the so-called polynomials of Jacobi [65] . In these, as in numerous

other cases, the denominators of the convergents and the remainder-

functions,* formed by multiplying each denominator into the cor

responding remainder, are solutions of homogeneous linear dif

ferential equations of the 2nd order which have a common group,

and the relations of recurrence between three successive denomi

nators or remainder-functions are the relationes inter contiguas of

Gauss and Riemann. (See in particular, [75, c?]
and [76].)

The further study of such groups of polynomials will probably

bring to light new and important properties. The position of

the roots of the denominators should especially be ascertained, be

cause the distribution of these roots has an intimate connection with

the form of the region of convergence of the continued fraction

and oftentimes also with the position and character of the function

which the continued fraction defines.

Probably the most fundamental question concerning Pad&s

table is that of the convergence of the various classes of continued

fractions or lines of approximants. The first investigation of the

convergence of an algebraic continued fraction was made by Rie

mann [18] in 1863, followed by TJiome [19] a few years later,f

Both writers investigated the continued fraction of Gauss by
rather painful methods, not based absolutely upon the algo

rithm of the continued fraction but upon extraneous considera

tions. This is not surprising, for there were at that time no gen

eral criteria for the convergence of continued fractions with

complex elements, and even now the number is astonishingly

small.

* In at least half of the table. See the preceding footnote.

t As Riemann s work appeared posthumously, Thome s has the priority of

publication (1866) but was itself preceded by Worpitzky s dissertation, to which

reference is made in a subsequent footnote.
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The two principal criteria for convergence correspond to the

familiar tests for the convergence of a real continued fraction

2

in which either (1) all the elements are positive or (2) the partial

denominators X. are positive and the partial numerators fi. are

negative. The latter class of real continued fractions is known to

converge if X
t
.= l p.. Pringsheim [29] has shown that when

the elements are complex, the condition
|

V = 1 -+ p. is still

sufficient for convergence. If, furthermore, the continued frac

tion has the customary normal form in which pn
= 1

,
the condition

may be replaced by the less restrictive one [29, p. 320],

1

\
The necessary and sufficient condition for the convergence of the

first class of real continued fractions can be most easily expressed

after it has been reduced to the form

If then 2X^ is divergent, the continued fraction converges, while

it diverges if 2X^ is convergent.* But in the latter case limits exist

for the even and the odd couvergeuts when considered separately.

This result is included in the following theorem which I gave in

the Transactions of 1901 for continued fractions with complex
elements [31] : If in

1 1 1

^ + i^ + a
2 + i/32 + &amp;lt;vMiS3 +

the elements a. have all the same sign and the /3. are alternately

positive and negative, f the continued fraction will converge if

2
1

a
n + ipn |

is divergent ;
on the other hand, if 2 a

n + ij3n \

is

*Seidel, Habilitationsschrift, 1846, and Stern, Journ.fdr Math., vol. 37 (1848),

p. 269.

fZero values are permissible for either a
t or 3,.
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convergent and either the a. or the /3. fulfill the condition just

stated concerning their signs, the even and the odd convergents
have separate limits.

The most general criterion for the convergence of

*! *
2 &S

1 + 1 + 1 +

(6i
real or complex) seems to be the one which I gave in October,

1901 [32, 6, 5].

Two remarks of a general nature concerning the convergence
of algebraic continued fractions may be of interest. In the con

sideration of numerical continued fractions a difficulty frequently

encountered is that the removal of a finite number of partial

fractions ^{l\ at the beginning of (5) may affect its convergence

or divergence. The convergence is therefore not determined

solely by the ultimate character of the continued fraction, as is

true of a series. Pringsheim[29~\ has proposed to call the con

vergence unconditional when it is not destroyed by the removal

of the first n partial fractions of
(5).

The difficulties due to con

ditional convergence usually disappear from consideration in treat

ing algebraic continued fractions. For let N
njDn now denote

the nth convergent. If after the removal of the first n partial

fractions the continued fraction converges uniformly in a given

region and accordingly represents a function F(z) which is holo-

morphic within the region, then after the restoration of the initial

terms the continued fraction will define the function

which must be either holomorphic or meromorphic within the given

region [32, a or c] . An exception occurs only if the denominator

of (6) vanishes identically in the region. This is impossible for

the second and third types of continued fractions, since the de

velopment of a rational fraction DJDn_ l
in either type (2)

or (3) consists of a finite number of terms, whereas the develop

ment of F(z\ by hypothesis, continues indefinitely.
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The second remark relating to convergence is that its discus

sion for a continued fraction is usually reduced to the correspond

ing question for an infinite series. The succession of convergents

is, in fact, obviously equivalent to the series

\
-&amp;lt;

But the latter by means of the familiar relations connecting the

denominators or the numerators of three consecutive convergents

may be reduced to the form :

Dn+lDn+2

+1

We turn now from these general considerations to the questions

of convergence connected with Pade s table. Under what con

ditions will the various lines of approximants converge ;
in par

ticular, the three standard types of continued fractions obtained

by following (1) the horizontal or vertical lines, (2) the stair-like

lines, and (3) the diagonal lines ? When they converge simul

taneously, have they a common limit? If not, what are the

mutual relations between the functions which they define? What
is the form of the region of convergence?

These and other questions press upon us, and are of great in

terest. A complete investigation has been made only for the

exponential series. Fade [37, a] finds that when p/q for any suc

cession of approximants N^D^ converges to a value
o&amp;gt;,

the ap

proximants converge toward the generating function e* for all

values of .r. Furthermore, the numerators and denominators sepa

rately converge, the former to the limit e&quot;

x/t ~ l

,
the latter to e~ x/&amp;lt;a+l

.

This smooth result is not, however, a typical one, not even for

entire functions. It is due at least in part to the fact that e? is
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an entire function without zeros. This will be apparent after an

examination has been made of the vertical and horizontal lines

of Fade s table, which we now proceed to consider.

It is obvious that the first p -\- q + \ terms of the given series

(4) determine an equal number of terms of the series for its re

ciprocal. If, therefore, in the table each approximant is replaced

by its reciprocal and the rows and columns are then interchanged,

we shall obtain the table for the reciprocal series. The problems

presented by the horizontal and vertical lines of the table are con

sequently of essentially the same character, and our attention may
be confined henceforth to the horizontal lines alone.

By the interchange just described the zeros and poles of (4)

become the poles and zeros respectively of the reciprocal function.

In the case of the exponential function the reciprocal series has

the same character as the initial series, each defining an entire

function without zeros, and the simultaneous convergence of rows

and columns for all values of x was therefore to be expected ;
but

in general this does not hold.

In investigating the convergence of the horizontal lines the first

case to be considered is naturally that of a function having a number

of poles and no other singularities within a prescribed distance of

the origin. It is just this case that Montessus [33, a] has exam

ined very recently. Some of you may recall that four years ago in

the Cambridge colloquium Professor Osgood
* took Hadamard s

thesis f as the basis of one of his lectures. This notable thesis is

devoted chiefly to series defining functions with polar singularities.

Montessus builds upon this thesis and applies it to a table possess

ing a normal character. Although his proof is subject to this

limitation, his conclusion is nevertheless valid when the table is

not normal, as I shall show in some subsequent paper.

The first horizontal row of the table scarcely needs considera

tion, for it consists of the polynomials obtained by taking suc

cessively 1, 2, 3, terms of the series. Consequently the con

tinued fraction obtained from the first row,

*BulL of the Amer. Math. Soc., vol. 5, pp. 74-78.

f Journ. de Math., ser. 4, vol. 8 (1892).
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1 a^ + a
2
x -f a.j

a
3
# + a

2

is identical with the series, and its region of convergence is a

circle.

Let E
l
be the radius of this circle and q l

the number of poles

of (4) which lie upon its circumference. Suppose also that the next

group of poles, q2
in number, lie upon a circle of radius R

2,
hav

ing its center in the origin ;
that

&amp;lt;?3 poles lie upon the next circle

(R3) ;
and so on indefinitely or until a circle is reached which con

tains a non-polar singularity. Hadamard (L c., 18) has proved

that the denominators D
pq

of the approximants of the (q l
+ l)th

row, of the (ql -f- q2 -f- l)th row, and so on, approach a limiting

form as we advance in the row, and that the limiting polynomials

give the positions of the first qv q l
+ q2) poles respectively..

Thus if, for example,

and
Km &amp;lt;&amp;lt;&amp;gt; =

I

the first group of poles are the roots of the polynomial
1 -f B

}
x + B

qi
xqi

. Using this result of Hadamard, Montes-

sus shows that in a normal table the approximants of the ((^-f l)th
tow converge at every point within the circle (E2) excepting,
of course, at the q l poles but not without this circle

; that the

approximants of the (^ -f- q2 -f l)th row converge similarly within

the circle
(JF?3) except at the included ql -f q2 poles ;

and so on.

In proving this Montessus makes use of an idea advanced in

Fade s thesis ([16, a, p. 51] ,
or [24]) which, though applicable in

the present case, is possibly somewhat misleading. In Fade s con

tinued fractions the partial numerators /LL are monomials in x. This

is due to the fact that there is a steady increase in the order of the

approximation afforded by the successive convergents at x = 0.

Consider now the series (7), and let T denote the region or set of

points in the avplane for which
|

D
n ,

from and after some value

of n, has both an upper and a lower limit Then in T the con-

i
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tinued fraction will converge or diverge simultaneously with the

power series,

(
8
) /*+!

-
/*+A+2 + A*n+i/*B+2^+3

Call C the circle of convergence of (8). At all points of T
within O the continued fraction converges, and at all exterior

points of T it diverges. On this account Fade proposes to call

C the &quot; circle of convergence
&quot;

of the continued fraction. In the

case which we have just been discussing this concept is applicable

because of the existence of limiting forms for the denominators of

the rows considered. The region T comprises the entire finite

plane with the exception of the roots of the limiting form, and

the circle C is successively identical with (R2), (-&3 )&amp;gt;

.... Thus,

as we pass down the rows of the table, we obtain continued frac

tions having an increasing region of convergence.

In introducing the term circle of convergence for a continued

fraction Fade ignores all points not included in T. Call the ex

cluded point-set T . If D
n \

increases indefinitely with increas

ing n over the whole or a part of T the series (7) may converge,

and this may happen even though (8) is a divergent series.* The

term circle of convergence is therefore an inappropriate one, al

though the considerations upon which it is based are useful.

Nothing more of account seems to be known concerning the

the convergence of the horizontal and vertical lines. f The more

common and important continued fractions are obtained from

diagonal and stair-like path& through the table. In many familiar

continued fractions of the second type,

a a,x a
2
x

a^x

T+ V+T + T +
&quot;

*The coefficients in the continued fraction of Stieltjes (discussed later in the

lecture) can be easily so determined as to give a case of this sort, the region of

convergence of (7) being the entire plane with the exception of the negative

half of the real axis. We suppose, with Fade that the absolute term of Dn is

taken equal to 1.

t It is perhaps worth noting that the coefficients in the first type of continued

fractions can not be selected arbitrarily if it is to be connected with such a table

as Fade constructs. In the other two types the coefficients are entirely arbitrary.
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a
n
with increasing n approaches a limit, as for instance in the con

tinued fraction of Gams where lim a
n
=

J. The significance of

the existence of such a limit I first pointed out for a comprehen

sive class of cases in 1901 [32, ],
and since then I have shown

by simpler methods [32, c] that the result is perfectly general.

Let lim a
n
= k. Then the continued fraction converges, save at

isolated points, over the entire plane of x with the exception of

the whole or a part of a cut drawn from x = 1 /4k to x = oo in

a direction which is a continuation of the vector from x = to

x = 1
/4A-.

Within the plane thus cut the limit of the continued

fraction is holomorphic except at the isolated points which (if they

exist) are poles. When there is no limit for a
n
but only an upper

limit U for its modulus, the continued fraction (see [32, 6]) is mero-

morphic or holomorphic at least within a circle of radius 1/4U
having its center in the origin.* A special case is that in which

lim a
n
= 0. The limit of the continued fraction is then a function

which is holomorphic or meromorphic over the entire plane. A
comparison of this last result with that of MonUssus shows that a

much greater region of convergence has now been obtained. This

is doubtless, in general, a reason for preferring the second and

third types of continued fractions to the first.

As another illustration of the second type of continued fraction

I shall choose the celebrated continued fraction of Stieltjes [26, a].

In this each coefficient a
n

is positive. By putting x = 1/2 in

(2), the continued fraction, after dropping a factor z, can be thrown

into the form

a[z -f- a/
2 -f a^z -f a[-f a

5
z+

&quot; ^/fl&amp;gt; *

which is the form preferred by Stieltjes. To every such con

tinued fraction there corresponds a series

* A demonstration of this property within the circle (1/4
T

) has been pre

viously given in a dissertation by Worpitzky [18 bis], which has come to my
notice for the first time during the examination of the proof-sheets of these lec

tures. This dissertation bears the date 1865 and appears to be the earliest pub
lished memoir treating of the convergence of algebraic continued fractions.
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(9)

for which

A =

(10)

C C
l
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vergent, the two sets of alternate convergents have limits which

are distinct. The conclusion is next extended by Stieltjes to the

half of the complex plane for which the real part of z is positive.

This brings him to the difficult part of his problem, the exten

sion of the result to the other half-plane but with exclusion of the

real axis. Here, particularly, Stieltjes [26, a, 30] shows his

ingenuity. He overcomes the difficulty by establishing first a

preliminary theorem which is of vital importance for sequences

of polynomials or rational fractions. The theorem is as follows.

Let /!(), /2(z),
be a sequence of functions which are holomor-

phic within a given region T, and suppose that 2*=] /n(z) is uni

formly convergent in some part T&quot; of the interior of T. Then

if f^z) +fjz) -f +fn(z)
has an upper limit independent of n in

any arbitrary region T which includes T&quot; but is contained in the

interior of T
y
the series 2/n(z)

will converge uniformly in T and

therefore has as its limit a function which is holomorphic over the

whole interior of T*.

In the application of this theorem Stieltjes decomposes each

convergent Nn(z)/Dn(z) into partial fractions,

M. M
z

M-L_ -1- -?__L ----L-r

z -f a-j
z + a

2
z -f a

r

in which

J/
( &amp;gt;0, a, SO, iX =

c,
i=l

From this it follows that NJDn
has an upper limit independent

of n in any closed region of the plane which does not contain a

point of the negative half-axis. If now in either the sequence

of the odd convergents or of the even convergents we denote the

nth term of the sequence by Nn jDn
and place

the series 2*=1/n(a) converges uniformly in any portion of the plane

*For a further extension of this line of work, see Osgood, Annals of

ser. 2, vol. 3(1901), p. 25.
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for which the real part of is positive. All the conditions of the

lemma of Stieltjes are now fulfilled, and the region of convergence

may be extended over the entire plane with the exception of the

negative half-axis.

On account of the uniform character of the convergence the

limit of either sequence is holomorphic at every point exterior to

the negative half-axis. When 2a^ is divergent, the two limits

coincide and the continued fraction itself is convergent. On the

other hand, if 2c^ is convergent, the two limits are distinct.

Stieltjes shows also that in the latter case the numerators and the

denominators of either sequence converge to holomorphic functions

P(Z )&amp;gt; &amp;lt;l(

z
)

f 9enre 0, and the two pairs of functions are connected

by the equation

which corresponds to the familiar relation

A more direct method [31] of demonstrating the convergence

results of Stieltjes is by an extension * of the criterion previously

cited for the convergence of continued fractions in which the

partial fractions !/( 4- *$) have an a
n of constant sign and a

@n
of alternating sign. The introduction of the lemma of Stieltjes

is consequently unnecessary, but I wish nevertheless to emphasize

its fundamental importance. Other notable results which it will

be impossible to reproduce here are also contained in his splendid

memoir.

* If namely, ^ |
an -f- i(3n \

is divergent and the condition concerning the signs

either of the an or of the /? is fulfilled, the continued fraction will converge pro

vided
| a* |/|/3 |

has a lower or an upper limit respectively. Put now zw2 in

(8
X
) so that it becomes

w \ a{w -f- 2
W ~h

When ^a^ is divergent, this falls under the extended criterion if we put

o/w= a
n + ifin, except when z is negative. On the other hand, when ^an

is con

vergent, the criterion applies without extension directly to (8 ). In either case

the uniform character of the convergence follows with the addition of a few lines.
(
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It is interesting to bring this work of Stieltjes into connection

with the table of Fade [44] . The odd convergents of the con

tinued fraction of Stieltjes fill the principal diagonal of Pade s

table, thus constituting by themselves a continued fraction of the

third type, and the even convergents fill the parallel file immedi

ately below, forming a similar continued fraction. The signifi

cance of distinct limits for the two sets of convergents is thus

made clearer.

The series of Stieltjes has perhaps its greatest interest when

treated in connection with the theory of divergent series. Although
the continued fraction always converges if the series does, the con

verse is not true. For when the series (9) is divergent, two cases

are to be distinguished according as 2 a/ is divergent or conver

gent. In the former case the continued fraction gives one and

only one functional equivalent of the divergent series. Le Roy

states,* though without proof, that the function furnished is

identical with the one obtained from the series by the method of

Borel, whenever the latter method is applicable also. When 2c^ is

convergent, two different functions are obtained from the con

tinued fraction, the one through the even and the other through
the odd convergents. And if there are two such functions which

correspond to the series, there must be an infinite number. For

if 0(.r) and
^r(.r),

when expanded formally, give rise to the same

divergent series, so also will

in which c denotes an arbitrary constant. Special properties,

however, attach themselves to the two functions picked out by the

continued fraction of Stieltjes, upon which we can not linger here.

This result of Stieltjes seems to me to be especially significant,

since it indicates a division of divergent series into at least two

classes, the one class containing the series for which there is prop

erly a single functional equivalent and the other comprising the

*Loc. at., p. 428.
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series which correspond to sets of functions. It is, of course,

just possible that this distinction may be due to the nature of the

algorithm employed in deriving the functional equivalent of the

series, but it is far more probable that the difference is intrinsic

and independent of the particular algorithm. If this view be cor

rect, the method of Borel which gives a single functional equivalent,

is limited in its application to series of the first class.

An extension of the work of Stieltjes has been sought in two dis

tinct directions by modification of the conditions imposed upon his

series. Borel [43] so modifies them as to make the series (when

divergent) fulfill the requirement imposed in lecture 2 and permit of

manipulation precisely as a convergent series. In the last number of

the Transactions *
[45] I began a study of series which are subject to

only one of the two restrictions expressed in the inequalities (10),

but was obliged to bring the work to a hurried close to prepare these

lectures. In the main, the corresponding continued fractions have

the same properties as the continued fraction of StieltjeSj but a con

siderable difference is shown in regard to convergence. Though
the roots of the numerators and denominators of the convergents
are still real, they are no longer confined to the negative half

of the real axis, and may be infinitely thick along the entire

extent of the axis. In certain cases the continued fraction con

verges in the interior of the positive and negative half planes,

defining in each an analytic function which has the real axis as a

natural boundary. The continued fraction therefore effects the

continuation of an analytic function across such a boundary, and

gives a natural instance of such a continuation f natural in dis

tinction from artificial examples set up with the express object of

showing the possibility of a unique, non-analytic extension.

Pade [17, a] has suggested the foundation of a theory of diver-

*July, 1903.

f Earlier instances of a natural continuation are also to be found, as, for

example, that afforded by

m m&amp;gt; (m -f-

across the axis of reals.
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gent series upon the continued fractions of his table. The diffi

culties of carrying out the suggestion are undoubtedly very great

and have been pointed out by BoreL* Not only must the con

vergence of the principal lines of approximants and the agreement

of their limits be investigated, but the combination of two or more

divergent series must also be considered. It is not enough to point

out, as does Pade, that the approximants of given order for any

two series, whether divergent or convergent, determine uniquely

the approximants of the same or lower order for the sum- and

product-series. For practical application of the theory it must be

proved also that the function defined by the table corresponding

to the newr series is, under suitable limitations, the sum or product

of the functions defined by the given divergent series. But great

as are the difficulties of such an investigation, even for restricted

classes of series, the reward will probably be correspondingly

great.

So far as it has been yet investigated, the diagonal type of con

tinued fractions seems to have accomplished nearly everthing that

can fairly be asked of a sequence of rational fractions. Not only

does it afford a convenient and natural algorithm for computing
the successive fractions, but in every known instance the region of

convergence is practically the maximum for a series of one valued

functions. The continued fraction offfalphen [2 1
, a] ,

so frequently

cited as an instance of a continued fraction which diverges though

the corresponding series converges, might appear at first sight to

be an exception. But this divergence occurs only at special points.

In fact, the continued fraction not only converges at the center of the

circle of convergence for the series, but, as Halphen himself says,

continues the function over the entire plane with the exception of

certain portions of a line or curve. If then, continued fractions

offer such advantages for known series and classes of functions, is

it too much to expect that in the future they will throw a powerful

searchlight upon the continuation of analytic functions and the

theory of divergent series ?

* Les Series divergentes, p. 60.
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LECTURE 6. The Generalization of the Continued Fraction.

In the last lecture the algebraic continued fraction was presented
under the form of a series of approximants for a given function.

An immediate generalization of this conception can be obtained

either by increasing the number of points at which an approxima
tion is sought or by requiring a simultaneous approximation to

several functions. The latter generalization results at once from

an attempt to increase the dimensions of the algorithm or, in other

words, the number of terms in the linear relation of recurrence

between the successive convergents or approximants. As this

generalization is without doubt the more important, I shall make
it the chief subject of this lecture. But a few words, at least,

should be devoted to the former extension, which is worthy of a

-more careful and systematic study than it has received.

Denote again by Np(x)jD,(x) a rational fraction with arbitrary

coefficients. These can, in general, be so determined that its ex

pansion at x shall agree for n
v
successive terms with a given

series

C + CrT + C
2
X2 +

its expansion at x a
l
for n

2
successive terms with

6 + b,(x
-

a,) + b.
2(x
-

atf + ..-,

at x = a
2
for n

3
successive terms with

k + kfo a
2)
+ kjx - a

2)

2 + ,

and so on, the total number of conditions thus imposed being equal

to p -f q -f 1 or the number of parameters in the rational frac

tion. To each set of values for the n. and q there corresponds an

approximant, and the various approximants can be arranged into

a table of multiple entry according to the values of these quan
tities. Continued fractions, at least in the case of a normal table,

can then be obtained by following any path which passes succes

sively from one approximant to another contiguous to it but more

advanced in the table. As we proceed along the path, the degree of

approximation for each of the points 0, ap 2 ,
must not decrease
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while at each step it is to increase for at least some one point. The

partial numerators of the continued fraction are then either posi

tive integral powers of x, x av x a
2,

-

,
or the products of such

powers. The degrees of the approximations obtained by stopping

the continued fraction with any term can be inferred readily from

the degrees of the partial numerators in x
y
x av x a.

2)
. The

details of the theory have not been worked out.*

The interest of such work can perhaps best be made apparent

by referring to the developments for the simplest case in which

each n. is taken equal to 1. The rational fraction N
pjDq

is then

completely determined by the requirement that at p -f q 4- 1 given

points a
l
= 0, a

2,
ay

- - it shall take an equal number of pre

scribed values, Av A 2,
A

B,
. If these are the values which a

single function assumes at the points, we have the rational frac

tions which were introduced by Cauchy into the theory of inter

polation [99, a] and which have been quite recently formed into

a table and examined by Fade [112]. As p + q -f 1 increases,

the number of points at which the approximation is sought like

wise steadily increases.

When q 0, the rational fraction becomes the familiar inter

polation-polynomial of Lagrange,

in which

This has been put into a very interesting form by Frobenius [95]

which permits, without reconstruction,f of an indefinite increase in

the number of its terms. Let us first take 1 j(z x) as the par

ticular function of x for which an approximation is sought. From
the equations

*The only investigation of this character is found in [76], but on account of the

nature of the functions there considered certain variations were made in the con

struction of the table.

tCf. also [99, a].
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I 1 1 x-a,
z x (z aj (x aj z a^ z a^ z x

_ *
{

x - a
i(

*
.,..

a? ~ g
a

&amp;gt;

1 \ =
z

!
z a

l \z a
2

z a
2

z x )
the series

/I) __
|

i

[

2
,V z x zcii (z a

l)(z a
2) ( o,)(2 a,)^ aj

is immediately derived, provided that the a
{
are so distributed as

to fulfill proper conditions for the convergence of the series. If

now we take successively 1, 2, 3, terms of the expansion, we

obtain the series of polynomials,

and it is evident that N
n(x) for the n + 1 values x = av a

2 ,

- -

,
an+

agrees in value with l/(z x). By applying to (1) the well-

known formula of Euler
[1, a]* for converting any infinite series

into a continuous fraction it follows immediately that these poly

nomials are the successive convergents of the continued fraction

CL

The generalization of formula (1) can be made at once in the

familiar manner by the use of Cauchy s integral. We get thus

^ 1
f/(z)& /^+ (g!

~ a
) r f(*)dz

-iW -
2^ J ^Z^ =/(.) -I -25T~ J (T~a,) (z

-
2)

4

which by placing

*() = (*
-

i) (
-

2) (
x ~ O

may be written

* Cf. Encyklopddie der Math. Wiss., I A 3, p. 134, formula (104).
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For most interesting discussions of the convergence and properties

of series having the form

A + A^x - aj + A
2(x
-

a^(x
-

2) + . . .

I may refer to memoirs by Frobenius [95] and Bendixson [99, c].

I shall content myself here with pointing out one simple appli

cation which is given implicitly by both writers but has been

noted again recently by Laurent [103].

Lety(.r) be any analytic function the values of which are given

at a series of points pi having a regular point P as their limit.

Describe about P as center any circle C within and upon which

f(x) is holomorphic, and denote the points p. which fall within

this circle by av 2,
. Then lim a. = P. If now z describes

the perimeter of the circle and x is a fixed interior point, the

series (1) will be uniformly convergent and consequently permit

of integration term by term. Equation (2) therefore gives an

expression for f(x) which is valid in the interior of C. This ex

pression shows at once that an analytic function is determined

uniquely when its values are known in a sequence of points having
a regular point P as their limit. If, in particular, each /(a.)

=
0,

f(x) must vanish identically. In other words, the zeros of an

analytic function can not be infinitely dense in the vicinity of a

non-singular point. Further, Bendixson points out that the con

vergence of the right hand member of (2) is not only the necessary

but the sufficient condition that /(aj, /( 2), /( 3 )&amp;gt;

shall be the

values of some analytic function at a set of points a . having a limit

point P.

We turn now to the generalization of the algorithm of the con

tinued fraction. The first investigation on this subject is found in
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a paper of Jacobi,* published posthumously in 1868. The devel

opments of Jacobi were, however, of a purely numerical nature.

On this side they have been perfected recently by Fr. Meyer [83] .

The first example of a functional extension was given by Hermite

in his famous memoir [84] upon the transcendence of e, and the

theory has been developed since independently of each other by
Pincherle and Fade.

To explain the nature of the generalization it will be desirable

first tb refer to the mode in which a continued fraction is com

monly generated. Two numbers or functions,fQ and/1?
are given,

from which a sequence of other numbers or functions is obtained

by placing

ft
~

\f\ &quot;~/o&amp;gt;

/4 = X3/3 f&

in which the \ are determined in accordance with some stated

law. For the quotient fQ/fv we obtain successively

and it therefore gives rise to the continued fraction

&amp;gt;.-U--v

By means of the equations (3) each fn+l can be expressed linearly

in terms of the initial quantities ,/^. Thus

in which A 0tH+l ,
A

1&amp;gt;n+l
are polynomials in the elements X.. It is

easy to see that these polynomials both satisfy the same difference

* &quot;

Allgeraeine Theorie der kettenbruchahnlichen Algorithmen, in welchen

jede Zahl aus drei vorhergehenden gebildet wird.&quot; Journ. fur Math., vol. 69

(1868), p. 29.
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equation as fc
/+,-*/. -/.-,;

and for their initial values we have

Consequently ^4, and A
Q&amp;gt;n

are the numerator and denominator

of the (n l)th convergent of (4).

When the generating relations have the form

the resultant continued fraction is

A distinction then appears between the system of functions

(A ltn+ i,
-4

0jW+1) and the system which consists of the numerator

and denominator of the nth convergent. Though the quotient

of the two functions of either system is the ?*th convergent, the

former pair of functions satisfy the same relation of recurrence as

the/., namely,

fn
=

\+lfn+l + f*n+*f*+* 5

while the corresponding relation for the other system is

9n
= \ffn -i + P9n-r

The latter equation is called by Pincherle [77, a] the inverse of

the former. In the continued fraction (4) we took /z . = 1 so

that the two relations were coincident.

The immediate generalization of these considerations is obtained

by taking m + 1 initial quantities fQ,fiy
- ;fm in place of two.

With a very slight change of notation we may write
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/. + \/, +++ * &quot;mfm -/+
(6) /, + X

2/2
+ M3/3

+ + &quot;m+1 /m+1 =f

Jn-m i~ \-m+ iJ n-m+l T /*n-m+2./n--i+2
* &quot; VnJn

=1
Jn+l*

Then by expressing /^ in terms of the m -f 1 given quantities we
have

(7)
m&amp;gt;

nfm,

in which ^ n is a polynomial in terms of the X
t., /*m , ,

vi+m_ l

(i
=

1, 2,
.

,
n m). These m 4- 1 polynomials ^ n satisfy

the same difference equation (6) as the fn ,
and for their initial

values we plainly have

A
w= 1

w= 1

m, n

o,

o,

n m 1.

Hence they constitute a complete system of independent integrals

of
(6). Furthermore, in analogy with the relation between two

successive convergents of (4),

= 1,

we have [83, a, p. 170]

A A
-^-0, n -^1,

J
(8)

A
0, n+l -^l.

I ,4 . . . A
L

0, n+m 1, n+m ^
m, n+m

The relation which is the inverse of (6) has the form

To obtain a system of independent integrals of this equation, let
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P n denote the minor of A Q n in (8), P, the minor of A
ltH

after

the first column has been moved over the remaining columns so

as to become the last, P
2&amp;gt;n

the minor of A
2

&amp;gt;M

after the first two

columns have been moved over the remaining columns so as to

become the last two, and so on. It can be demonstrated easily

that the desired system is obtained by placing gin+m = P
itn

(i
= 0, 1, -,?/*),

and these new polynomials rather than the

A
i n are the true analogues of the numerator and denominator of

an ordinary continued fraction. The connection between the two

systems of polynomials is, however, both an intimate and a re

ciprocal one, for not only is (9) the inverse of (6) but the converse

is also true. On this account the two systems can be employed

simultaneously with advantage in working with the generalized

continued fraction.

For all except the very lowest values of n the new polynomials
can be found from the equations

*

( ) P&amp;lt;,n
+W, + ftA-C + + &quot;.A,-.

=
-P,

, .-.-I-

In place of these relations it will be often found convenient to

employ such a process as is indicated in the following equations

for m = 2 [83, a, p. 180].f
1

p 9i, i
&amp;gt; n^~ (ft, i

+
;. 9 n~~= &amp;lt;?i.

i + &quot;

&amp;gt;

A 4

?2,2 +

- =
9i,i +

*Cf. [83, a, p. 174, eq. X].

fCf. E. Fiirstenau,
&quot; Ueber Kettenbriiche hoherer Ordnung&quot; ;

Jahresbericht

ilber d is konigliche Reakfywuuuimm zn \\ ie*ba ten ; 1873 4. See also Scott s De
terminant?, Chap. 13, I 11-12.

11
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We may therefore very properly call the system of values

X, it, i

\ ^

the norm of a generalized continued fraction, which itself consists

of the computation of the P
t n or their ratios.

To apply this generalization to the construction of algebraic

continued fractions, it is only necessary to select as the m -J- 1 initial

functions / , , fm series in ascending powers or series in

descending powers of x. The nature of the ensuing theory will

be explained sufficiently by developing here the simplest case, in

which three such series are given [77, c.] Take then

(*. * 0),

S,

If we next place

(10) S
Q + (aQ

x -f- #o)$! + fy)^2
~

^3&amp;gt;

the coefficients
,
a

Q ,
6 can be so determined that S

3
shall begin

with at least as high a power of \jx as the third. Normally the

degree is exactly 3, and similarly for each consecutive value of n

we have

in which 8n denotes a series beginning with the nth power of

1/x. Hence unless certain specified conditions are satisfied, a

regular continued fraction will be obtained having the norm :

1
&amp;lt;V&

+ a
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This norm will not be altered in any way by dividing (10)

through by SQ
. It is therefore determined uniquely by the ratios

of
,
S

19
8

2 ,
and conversely the ratios by the norm.

Without loss of generality we may set S = 1. Place also

n+l

C_ A.

e.+&

R

If then n -f 3 in (11), is replaced successively by n and 71 + 1,

and the two equations are solved for S
l
and S# we obtain

or

(12)

and

(13)
R

n

p .fa

An examination of P
t , Qn ,

R
nt
X

n , /*n
will show that their degrees

in .r are

n 1, ?2-2, H 3, -/ -I, r. (n = 2r),

w-1, n-2, -3, -/ -I, -/--I
(
?? = 9,,+ i).

Hence the expansions of Qn
P

n
and RjPn

in descending powers of

a?, agree with
,
and ^

2
to terms of degree 3/- - 1 and 3r 2 in

clusive if 7i=2r, and of the 3/-th degree if ?i = 2-r+l. The

generalized continued fraction therefore affords a solution of the

problem : to find two rational fractions with a common denom
inator which shall give as close an approximation to the given
functions

,
and S

2
as is consistent with the degrees prescribed for

their numerators and denominators.

When three series in ascending powers of x,

-f ( &quot;=1,2,3),
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are chosen as the initial functions, a more comprehensive algorithm

can be introduced. Fade [79, a] takes three polynomials A (

p
}

(x\

Affi(x),
A (

fi(x) with undetermined coefficients, the degrees of which

are indicated by their subscripts, and requires that their coefficients

shall be so determined that the expansion of

in ascending powers of x shall begin with as high a power as

possible. Ordinarily this is the (p + p + p&quot; + 2)th power. To

each set of values of p, p , p&quot;
he shows that there corresponds

uniquely a group of three polynomials which he terms the &quot; asso

ciated polynomials,&quot; and these groups he arranges into a table of

triple entry according to the values of p, p , p&quot;.
An exactly

similar table can not be constructed for three series in descend

ing powers of x, inasmuch as the substitution of 1/x for x in

A^\ i
A&,1 gives three rational fractions, with powers of x in

the denominators which can not be thrown away unless

p=p =
p&quot;.

The new table is handled by Fade in the same manner as the

one previously constructed for a single series. In particular, he

examines the relations

aA? + 0A? + jAy = A? (i
= 1, 2, 3),

which exist between four successive groups of associated poly

nomials, a, /3, 7 being rational functions of x which are indepen

dent of the value of i. When it is possible to so select a sequence
. . A (

*\ A, A (

r

{

\ A (

*\ A (i
t\ - that a, 0, 7, are polynomials of

invariable degree for any four consecutive terms in the sequence,

the sequence or continued fraction is said to be regular. In a

normal table there are found to be four distinct types of such con

tinued fractions. It is worth noting, however, that the diagonal

type which was the best in an ordinary table, no longer exists since

it is found that when the sequence fills a diagonal file of the table,

a, /3, and 7 are no longer polynomials but rational fractions having

a common denominator.
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In one important respect Pad&s investigation has a narrower .

reach than Pincherle s and needs completion. The existence of a /

second group of associated polynomials the P
w , Qn)

R
n
of Pin-

1

cherle is not brought to light. As has been already pointed out,

it is this second group of polynomials which is the true analogue

of the convergent of an ordinary continued fraction and which

must take precedence in considering the convergence of the algo

rithm or the closeness of the approximation afforded to the initial

functions. Pincherle s definition of convergence [82] is not, how

ever, so framed as to require explicitly the introduction of these

polynomials. If the given system of difference equations is

(14) / =
c,/,, +2 + rf./. +I + / (n = 0, 1, 2, ),

the continued fraction is said by him to be convergent when the

two following conditions are fulfilled :

(1) There is a system of integrals Fn9
F

n , F^ of (14) such that

FJFn9 F&quot;JFn
have limits for n oo, and these limits are different

from 0.

(2) There is also one particular integral called by Pincherle

the integrate distinto the ratio of which to every other integral

of (14) has the limit zero.

Pincherle s interest is evidently concentrated upon this prin

cipal integral. It seems to me, however, more natural to call

the algorithm convergent when the ratios Qn/Pn
and R

n/Pn (cf.

Equations 12 and 13) converge to finite limits for n = oo. Under

ordinary circumstances these limits will doubtless coincide with

the ratios of the generating functions, f^f^ audf2/fQ .

In the case of an ordinary continued fraction the two definitions

coalesce. For suppose that the ?ith convergent NnjDn
of (4 )

has

the limit L. Then JV^ LD
n

is such an integral of the differ

ence equation,

/ = \/._, + /*./.-

that its ratio to any other integral, k
l
N

n -f 2
D

M ,
has the limit 0.

Conversely, if the principal integral Xn
LD

n exists, there must

be a limit L for the continued fraction. Possibly the case in
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which the principal integral is D
n might be called an excep

tion, since the continued fraction is then convergent by Pincherle s

definition, but lim N
njDn

= oc.

A study of the conditions of convergence, so far as I am aware,

has at present been made in only two special cases. Fr. Meyer

[83, a, 7] has made a partial investigation when the coefficients

X
n, ,

v
n
in equations (6) are negative constants. Pincherle [82]

has examined the case in which the coefficients of the recurrent

relation

/. + (.* + :)/.+ + b
,,/,=/n+ 3

have limiting values and finds that the generalized continued frac

tion is convergent for sufficiently large values of x. Let the limits

of the coefficients be denoted by a, a
,
and b respectively. To

demonstrate the convergence he avails himself of the notable the

orem of JPoincar6, already cited in Lecture 4. If, namely, no two

roots of the equation

(15) z
3 - bz2 -

(ax + a )/- 1 =

are of equal modulus,fjfn_ l
will have a limit for n oo, and this

limit will be one of the roots of the auxiliary equation (15),

usually the root of greatest modulus. From this it follows di

rectly that AJA n_v BJBn_v CJ Cn_ l
as quotients of integrals of

the difference equation last given, also P
njPn_v Qn / Qn_ v RJRn_ l

as integrals of the inverse equation, have each a definite limit. The

existence of limits for Qn/Pn
and of R

njPn
is then established

for sufficiently great values of x, and the analytic character of

these limits is finally argued. Let them be denoted by U(x) and

V(x). Then Xn
= A

n + B
n U(x) + Cn V(x) is the principal in

tegral of the difference equation, and has the following distinctive

property : Its expansion in powers of 1 /x begins with the highest

possible power consistent with the degrees of A
H ,
B

n ,
C
n ,

and

coincides wiihfn for each successive value of n.
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BIBLIOGRAPHY OF MEMOIRS RELATING TO ALGEBRAIC

CONTINUED FRACTIONS.

In the following bibliography only works in Latin, Italian,

French, German, and English are included. In
Wolffin&amp;lt;f&

Mathe-

matischer Biicherschatz (heading Kettenbruche) several dissertations,

etc., are mentioned which may possibly relate to algebraic con

tinued fractions but which are not accessible to the writer. They
are therefore not included here. The writer would be glad to

have his attention called to any noteworthy omissions in the

bibliography.

In many cases it has been extremely difficult to draw the line

between inclusion and exclusion, especially under divisions vi-ix.

Any classification of the -material which may be adopted will be

open to objections, but even an imperfect classification w?
ill prob

ably add greatly to the usefulness of the bibliography. Since

much of the work relating to algebraic continued fractions appears

elsewhere under other headings, it is believed that such a bibliog

raphy as is here given may be of service.

For a brief resume&quot; of the theory of algebraic continued frac

tions the reader is referred to Osgood s section of the Encyklopadie
der Math. Wissemchaft, II B i, 38-39.

I. ON THE DERIVATION OF CONTINUED FRACTIONS FROM POWER
SERIES. GENERAL THEORY.

A. Early Works.

1. Euler. (a) Introductio in analysin infinitorura. vol. 1, chap. 18,

1748.

(Z&amp;gt;)

De transformatione serierum in fractiones contlnuas. Opus-
cula analytica, vol. 2, pp. 138-177, 1785.

2. Lambert, (a) Verwandlimg der Briiche. Beytrage zum Gebrauche
der Mathematik und deren Anwendung, vol. 2j, p. 54 ff., p. 161,
1770.

(6) M&moire sur quelques proprietes remarquables des quantit^s
transcendentes circulaires et logarithmiques. Histoire de
1 Acad. roy. des sciences et belles-lettres & Berlin, 1768.
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3. Trembley. Recherches sur les fractions continues. Mem. de

1 Acad. roy. de Berlin, 1794, pp. 109-142.

4. Kausler. (a) Expositio methodi series quascunque datas in frac-

tiones continuas convertendi. Mem. de 1 Acad. imp. des sci

ences de St. Petersbourg, vol. 1, pp. 156-174, 1802.

(b) De insigni usu fractionum continuarum in calculo integrale.

Ibid., vol. 1, pp. 181-194, 1803.

5. Viscovatov. (a) De la method e generale pour reduire toutes sortes

des quantites en fractions continues. Ibid., vol. 1, pp. 226-247,

1805.

(b) Essai d une methode generale pour reduire toutes sortes de

series en fractions continues. Nova Acta Acad. Scient. imp.

Petropolitanaj, vol. 15, pp. 181-191, 1802.

6. Bret. Theorie generale des fractions continues. Gergonne s

Annales de Math., vol. 9, pp. 45-49, 1818. Unimportant.

7. Scubert. De transformatione seriei in fractionem continuani.

M6m. de 1 Acad. imp. des sciences de St. Petersbourg, vol. 7,

pp. 139-158, 1820.

8. Stern, (a) Zur Theorie der Kettenbriiche und ihre Anwendung.
Jour, fur Math., vol. 10, pp. 241-265, 1833.

(b) Zur Theorie der Kettenbriiche. Jour, fur Math., vol. 18, pp.

69-74, 1838.

9. Heilermann. (a) Ueber die Verwandlung der Reihen in Ketten

briiche. Jour, fur Math., vol. 33, pp. 174-188, 1846
;
also vol.

46, pp. 88-95, 1853.

(b) Zusammenhang unter den Coefficienten zweier gleichen Ket

tenbriiche von verschiedener Form. Zeitschrift fur Math, mid

Phys., vol. 5, pp. 362-363, 1860. Unimportant.

10. Hankel. Ueber die Transformation von Reihen in Kettenbriiche.

Berichte der Sachischen Gesellschaft der Wissenschaft zu Leip

zig, vol. 14, pp. 17-22, 1862.

11. Muir. (a) On the transformation of Gauss hypergeometric series

into a continued fraction. Proc. of the London Math. Soc.,

vol. 7, pp. 112-118, 1876.

(b) New general formulae for the transformation of infinite series

into continued fractions. Trans, of the R. Soc. of Edinburgh,

vol. 27, pp. 467-471, 1876.

The general formulae in these memoirs, which Muir supposed

to be new, had been previously given by Heilermann in 9(a).

12. Heine. Handbuch der Kugelfunction, 2 te

Auflage, 1878
; chap. 5,

Die Kettenbriiche, pp. 260-297.

This gives a good idea of the state of the theory up to 1878.
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B. The Modern Theory.

The beginnings of this theory are to be found in Nos. 110

and 111.

13. Frobenius. ITeber Relationeu zwischen den Naherungsbriichen von

Potenzreihen. Jour. fur Math., vol. 90, pp. 1-17, 1881.

This fundamental memoir marks an important advance. See

16(o).

14. Stieltjes. Sur la reduction en fraction continue d une serie pro-

cedant suivant les puissances descendantes d une variable.

Ann. de Toulouse, vol 3, H, pp. 1-17, 1889.

15. Pincherle. Sur une application de la theorie des fractions contin

ues algebriques. Comp. Rend., vol. 108, p. 888, 1889.

16. Fade, (a) Sur la representation approchee d une fonction par des

fractions rationnelles. Thesis, published in the Ann. de 1 Ec.

Nor., ser. 3, vol. 9, supplement, pp. 1-93, 1892.

This very fundamental memoir is the best one to read for the

purpose of learning the elements of the theory of algebraic

continued fractions. The same point of view is taken as by
Frobenius in (13) and is more completely developed. The

thesis was preceded by the two following preliminary notes :

(a
x
) Sur la representation approchee d une fonction par des

fractions rationnelles. Comp. Rend, vol. Ill, p. 674, 1890.

(a&quot;)
Sur les fractions continues regulieres relatives a e*.

Comp. Rend, vol. 112, p. 712, 1891.

(ft) Recherches nouvelles sur la distribution des fractions

rationnelles approchees d une fonction. Ann. de 1 Ec. Nor.,

ser. 3, vol. 19, pp. 153-189, 1902.

(c) Apercu sur les developpements recents de la theorie des

fractions continues. Compte rendu du deuxieme Congres inter

national des mathe&quot;maticiens tenu a Paris, pp. 257-264, 1900.

Only a restricted portion of the field is here reviewed, and in

this portion the important work of Pincherle is overlooked.

17. Fade, (a) Sur les series entieres convergentes ou divergentes et

les fractions continues rationelles. Acta Math., vol. 18, pp.

97-111, 1894.

(a ) Sur la possibility de definir une fonction par une serie

entiere divergente. Comp. Rend., vol. 116, p. 686, 1893.

See also No. 26a
3
76.

II. ON CONVERGENCE.

(For a resume of the criteria for the convergence of continued

fractions with real elements see PRINGSHEIM S report in the En-

cyklopadie der mathematischen Wissenschaften, I A 3, p. 126, ff.)
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18. Riemann. Sullo svolgimento del quoziente di due serie ipergeo-

metriche in frazione continua infinita, 1863. Gesammelte inath-

ematische Werke, pp. 400-406.

18, bis. Worpitzky. Untersuchung iiber die Entwickelung der mono-

dromen und monogenen Functionen durch Kettenbriiche. Pro-

gramm, Friedrichs Gyinnasiuoi und Realschule, Berlin, 1865.

This program and the two following memoirs of Thome were

published before Riemann s posthumous fragment.

19. Thome, (a) Ueber die Kettenbruchentwickelung der Gauss schen

Function F(a, 1, y, x). Jour, fur Math., vol. 66, pp. 322-336,

1866.

(b) Ueber die Kettenbruchentwickelung des Gauss schen Quo-
tienten

Ibid., vol. 67, pp. 299-309, 1867.

20. Laguerre. Sur 1 integrate

C e
~x

i
\ dx.

Jx X

Bull, de la Soc. Math, de France, vol. 7, pp. 72-81, 1879, or

Oeuvres, vol. 1, p. 428.

Historically an important memoir because of its development
of the connection between a divergent power series and con

vergent continued fraction. See the first footnote in lecture 4
;

also No. 102, p. 30.

21. Halphen. (a) Sur la convergence d une fraction continue alge-

brique. Comp. Rend., vol. 100 (1885), pp. 1451-1454.

(6) Same subject. Ibid., vol. 106 (1888), pp. 1326-1329.

(c) Traite des fonctions elliptiques. Chap. 14. Fractions con

tinues et integrates pseudo-elliptiques.

. 22. Pincherle. Alcuni teoremi suite frazioni continue. Atti delle R.

Accad. dei Lincei, ser. 4, vol. 5
X , pp. 640-643, 1889.

The test for convergence given here is included in a more

general criterion given later by Pringsheim, No. 29.

.23. Pincherle. Sur les fractions continues algebriques. Ann. de 1 Ec.

Nor., ser. 3, vol. 6, pp. 145-152, 1889.

An incomplete result is here obtained. See No. 32c for the

complete theorem.

24. Fade. Sur la convergence des fractions continues simples. Comp.

Rend., vol. 112, p. 988, 1891. Also found in 45-47 of No. 16a.
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25. Banning. Ueber Kugel- und Cylinderfunktionen und deren Ket-

tenbruchentwickelung. Dissertation, Bonn, 1894, pp. 1-33.

26. Stieltjes. (a) Recherches sur les fractions continues. Annales de

Toulouse, vol. 8, J, pp. 1-122, and vol. 9, A, pp. 1-47. 1894-95.

Published also in vol. 32 of the Memoires presenters a 1 Acad.

des sciences de 1 Institut National de France.

A rich memoir, developing particularly the connection

between an important class of continued fractions and the cor

responding integrals.

(a ) Sur un developpement en fraction continue. Comp.

Rend., vol. 99, p. 508, 1884.

(a&quot;)
Same subject. Ibid., vol. 108 (1889), p. 1297.

(a
/7/

) Sur une application des fractions continues. Ibid., vol.

118 (1894), p. 1315.

(a
TV

) Recherches sur les fractions continues. Ibid., vol. 118

(1894), p. 1401.

Markoff. (b) Note sur les fractions continues. Bull, de 1 Acad.

imp. des sciences de St. Petersbourg, ser. 5, vol. 2, pp. 9-13,

1895.

This gives a discussion of the relation of his work to that of

Stieltjes.

27. H. von Koch, (a) Sur un theoreme de Stieltjes et sur les fonctions

definies par des fractions continues. Bull, de la Soc. Math, de

France, vol. 23, pp. 33-40, 1895.

( ) Sur la convergence des determinants d ordre infini et des

fractions continues. Comp. Rend., vol. 120, p. 144, 1895.

28. Markoff. Deux demonstrations de la convergence de certaines frac

tions continues. Acta Math., vol. 19, pp. 93-104, 1895.

Contained also in his Differenzenrechnung (deutsche Ueber-

setzung), chap. 7, 21-22.

This discusses the convergence of the usual continued frac

tion for

z y

when/(7/) &amp;gt;
between the limits of integration.

29. Pringsheim. Ueber die Convergenz unendlicher Kettenbruche.

Sitzungsberichte der math.-phys. Classe der k. bayer schen

Akad. der Wissenschaften, vol. 28, pp. 295-324, 1898.

The most comprehensive criteria for convergence yet obtained

are found in 29, 31, and 325.
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30. Bortolotti. Sulla convergenza delle frazioni continue algebriche.

Atti della R. Accad. del Lincei, ser. 5, vol. 8,, pp. 28-33, 1899.

31. Van Vleck. On the convergence of continued fractions with com

plex elements. Trans. Amer. Math. Soc., vol. 2, pp. 215-233,
1901.

32. Van Vleck. (a) On the convergence of the continued fraction of

Gauss and other continued fractions. Annals of Math., ser. 2,

vol. 3, pp. 1-18, 1901.

(b) On the convergence and character of the continued fraction

Trans. Amer. Math. Soc., vol. 2, pp. 476-483, 1901.

(c) On the convergence of algebraic continued fractions whose

coefficients have limiting values. Ibid., vol. 5, pp. 253-262,

1904.

33. Montessus. (a) Sur les fractions continues algebriques. Bull, de

la Soc. Math, de France, vol. 30, pp. 28-36, 1902.

The content of this memoir was discussed in lecture 5.

(b) Same title. Comp. Rend., vol. 134 (1902), p. 1489.

See also 37a
,
41.

III. ON VARIOUS CONTINUED FRACTIONS OF SPECIAL FORM.

A. The Continued Fraction of Gauss.

34. Gauss. Disquisitiones generales circa seriem infinitam

Deutsche Uebersetzung von Simon, or Werke, vol. 3, pp. 134-

138, 1812.

34, bis. Vorsselman de Herr. Specimen inaugurale de fractionibus con-

tinuis. Dissertation, Utrecht, 1833.

Numerous references are given here to the early literature

upon continued fractions.

34, ter. Heine. Auszug eines Schreibens iiber Kettenbriiche von Herrn

E. Heine an den Herausgeber. Jour, fiir Math., vol. 53, pp.

284-285, 1857.

See also 40c, p. 231.

35. Euler. (a) Commentatio in fractionem continuam in qua illustris

Lagrange potestates binomiales expressit. Memoires de 1 Acad.

imp. des sciences de St. Petersbourg, vol. 6, pp. 3-11, 1818.
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Fade, (b) Sur la generalisation des deVeloppements en fractions

continues, donnes par Gauss et par Eider, de la fonction

(1 + x)
m

. Comp. Rend.
,
vol. 129, p. 753, 1899.

(c) Sur la generalisation des developpements en fractions contin

ues, donnes par Lagrange de la fonction (1 + x)
m

- Ibid., vol.

129, p. 875, 1899.

(d) Sur 1 expression generale de la fraction rationnelle approchee

de (1 + x)
m

. Ibid., vol. 132, p. 754, 1901.

See also Nos. 11, 32a, 65.

B. The Continued Fractions for e*.

36. Winckler. Ueber angenaherte Bestinimungeu. Wiener Berichte,

Math.-naturw, Classe, vol. 72, pp. 646-652, 1875.

37. Fade, (a) Meraoire sur les developpements en fractions continues

de la fonction exponentielle, pouvant servir d introduction a la

theorie des fractions continues algebriques. Ann. de 1 Ec.

Nor., Ser. 3, vol. 16, pp. 395-426, 1899.

(a ) Sur la convergence des reduites de la fonction exponentielle.

Comp. Rend., vol. 127, p. 444, 1898.

See also Nos. 16a&quot;, 106, and pages 243-5 of 40c.

C. The Continued Fraction of Bessel.

38. Giinther. Bemerkungen iiber Cylinder-Functionen. Archiv der

Math, und Phys., vol. 56, pp. 292-297, 1874.

39. Graf, (a) Relations entre la fonction Besselienne de 1&quot; espece et

une fraction continue. Annali di Mat., ser. 2, vol. 23, pp. 45-65,

1895.

Giving references to earlier works where the continued frac

tion of Bessel is found.

Crelier. (b) Sur quelques proprietes des fonctions Besseliennes,

tirees de la theorie des fractions continues. Annali di Mat.,

vol. 24, pp. 131-163, 1896.

See also Nos. 25, 32a.

D. The Continued Fraction of Heine.

40. Heine, (a) Ueber die Reihe

a l-l) (g6_ 1)(gp +1_1)
1

&quot;

)
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Jour, fur Math., vol. 32, pp. 210-212, 1846.

(b) Untersuchung iiber die (selbe) Reihe. Ibid., vol. 34, pp. 285-

328, 1847.

(c) Ueber die Zahler und Nenner der Naherungswerthe von Ket-

tenbriiche. Ibid., vol. 57, pp. 231-247, 1860.

Christoffel (d) Zur Abhandlung
&quot; Ueber Zahler und Nenner&quot;

(u. s. w.) des vorigen Bandes. Ibid., vol. 58, pp. 90-91, 1861.

41. Thomae. Beitriige zur Theorie der durch die Heine sche Reihe

darstellbaren Funktionen. Jour, fur Math., vol. 70, 1869. See

pp. 278-281 where the convergence of Heine s continued frac

tion is proved.

See also 32a.

42. (On Eisensteiri s continued fractions).

Heine, (a) Verwandlung von Reihen in Kettenbriiche. Jour, fur

Math., vol. 32, pp. 205-209, 1846.

See also vol. 34, p. 296.

Muir. (b) On Eisenstein s continued fractions. Trans. Roy. Soc.

of Edinburgh, vol. 28, part 1, pp. 135-143, 1877.

Muir plainly was not aware of the preceding memoir by
Heine.

E. The Continued Fraction of Stieltjes. (See No. 26.)

43. Borel. Les series de Stieltjes, Chap. 5 of his Memoire sur les

series divergentes. Ann. del Ec. Nor., ser. 3, vol. 16, pp. 107-

128
;
and also chap. 2 of his treatise, Les Series divergentes,

pp. 55-86, 1901.

44. Fade. Sur la fraction continue de Stieltjes. Comp. Rend., vol. 132,

p. 911, 1901.

45. Van^Vleck. On an extension of the 1894 memoir of Stieltjes.

Trans. Amer. Math. Soc., vol. 4, pp. 297-332, 1903.

See also Nos. 27, 102.

F. The Continued Fraction for

1 + mx + m(m + 7i)x
2 + m(m + n) (m -f 2ri)x* -\

and its special cases.

46. Euler. (a) De seriebus divergentibus. Novi commentarii Acad.

scientiarum iinperialis Petropolitanse, vol. 5, pp. 205-237, 1754-

5
;
in particular pp. 225 and 232-237.

(b) De transformatione seriei divergentis

1 mx -f m(m -f- ri)x&quot;* m(m + n) (m + 2ri)z? -f

I
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in fractioneni coutinuam. Nova acta Acad. scientiarum im-

perialis Petropolitanse, vol. 2, pp. 36-45, 1784.

Gergonne. (c) Recherches sur les fractions continues. Gergonne s

Annales de Math., vol. 9, pp. 261-270, 1818.

47. Laplace, (a) Trait6 de mecanique celeste. Oeuvres, vol. 4, pp.

254-257, 1805.
/ -x*

Jacobi. (b) De fractione continua in quam integrale I e dx
Jx,

evolvere licet. Jour, fur Math., vol. 12. pp. 346-347, 1834, or

Werke, vol. 6, p. 76.

See also p. 79 of No. 20, and the first note under lecture 2.

G. Periodic Continued Fractions, and Continued Fractions Connected with

the Theory of Elliptic functions.

48. Abel, (a) Sur V integration de la formule differentielle pdxlVR, R
et p etant des fonctions entieres. Jour, fur Math., vol. 1, pp.

185-221, 1826, or Oeuvres, vol 1, p. 104 if.

Dobma. (b) Sur le developpement de VR en fraction continue.

Nouvelles Ann. de Math., ser. 3, vol. 10, pp. 134-140, 1891.

49. Jacobi. (a) Note sur une nouvelle application de 1 analyse des

fonctions elliptiques a 1 algebre. Jour, fur Math., vol. 7, pp.

41-43, 1831, or Werke, vol. 1, p. 327.

Borchardt. (6) Application des transcendantes abeliennes a la

theorie des fractions continues. Ibid., vol. 48, pp. 69-104, 1854.

50. Tchebychef. Sur F integration des differentielles qui contiennent

une racine carree d un polynome du troisieme ou du quatrieme

degre. Memoires de FAcad. imp. des sciences de St. Peters-

bourg, ser. 6, vol. 8, pp. 203-232, 1857.

51. Frobenius und Stickelberger. Ueber die Addition und Multiplication
der elliptischen Functionen. Jour, fur Math., vol. 88, pp. 146-

184, 1880.

52. Halphen. Sur les integrates pseudo-elliptiques. Comp. Rend., vol.

106 (1888), pp. 1263-1270.

53. Bortolotti. Sulle frazioni continue algebriche periodiche. Rendi-

conti del Circolo Mat. di Palermo, vol. 9, pp. 136-149, 1895.

See also Nos. 21, 26(a), 40.

H. Miscellaneous.

54. Euler. (a) Speculations super formula integrali

xndx

/a2 2bx + ex2
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ubi simul egregiae observationes circa fractiones continuas occur-

rent. Acta Acad. scientdarum imperialis Petropolitanae, 1784,

pars posterior, pp. 62-84, 1782.

(b) Summatio fractionis continuse cujus indices progressionem
arithmeticam constitimnt. Opuscula Analytica, vol. 2, pp. 217-

239, 1785.

55. Spitzer. (a) Darstellung des unendlichen Kettenbruchs

in geschlossener Form, nebst anderen Bemerkungen. Archiv

der Math, und Phys., vol. 30, pp. 81-82, 1858.

(6) Darstellung des unendlichen Kettenbruchs

in geschlossener Form. Ibid., vol. 30, pp. 331-334, 1858.

(c) Note iiber eine Kettenbriiche. Ibid., vol. 33, pp. 418-420,
1859.

(d) Darstellung des unendlichen Kettenbruches

1

n(2x + 3) + n(2x + 5) +
in geschlossener Form. Ibid., vol. 33, pp. 474-475, 1859.

56. Laurent, (a) Note sur les fractions continues. Nouvelles Ann. de

Math., ser. 2, vol. 5, pp. 540-552, 1866.

This treats the continued fraction

1+1+1+
E. Meyer, (b) Ueber eine Eigenschaft des Kettenbruches

x . Archiv der Math, und Phvs. , ser. 3, vol. 5,
x x

p. 287, 1903.

Meyer s results will be found on p. 548 of Laurent s memoir

and differs only in that x has been replaced by l/x
2
.

57. Schlomilch. (a) Ueber den Kettenbruch fur tan z. Zeitschrift fur

Math, und Phys., vol. 16, pp. 259-260, 1871.

Glaisher. (b) A continued fraction for tan nx. Messenger of

Math., ser. 2, vol. 3, p. 137, 1874.

(c) Note on continued fractions for tan nx. Ibid., ser. 2, vol. 4,

pp. 65-58, 1875.

&quot;.
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j
58. Schlomilch. Ueber die Kettenbruchentwickelung fur unvollstan-

dige Gamma-function. Zeitschrift fur Math, und Phys., vol.

16, pp. 261-262, 1871.

This gives the development of I t*~ l e~ f
dt.

Jo

59. Schendel. Ueber eine Kettenbruchentwickelung. Jour, fur Math.,

vol. 80, pp. 95-96, 1875.

60. Lerch. Note sur les expressions qui, dans diverses parties du plan,

representent des fonctions distinctes. Bull, des sciences Math,

ser. 2, vol. 10, pp. 45-49, 1886.

61. Stieltjes. (a) Sur quelques integrates definies et leur developpement
en fractions continues. Quar. Jour, of pure and applied Math.,
vol. 24, pp. 370-382, 1890.

(&amp;gt;)

Note sur quelques fractions continues. Ibid., vol. 25, pp. 198-

200, 1891.

62. Hermite. Sur les polynomes de Legendre. Jour, fur Math., vol.

107, pp. 80-83, 1891.

This connects DWl*n
\x) with a continued fraction.

IV. ON THE CONNECTION OF CONTINUED FRACTIONS WITH DIFFEREN

TIAL EQUATIONS AND INTEGRALS.

A. EiccatVs Differential Equation.

63. Euler. (a) De fractionibus continuis observation es. Commentarii

academise scientiarum imperialis Petropolitanae, vol. 11, see

pp. 79-81, 1739.

(6) Analysis facilis sequationem Riccatianam per fractionem con-

tinuam resolvendi. Memoires de 1 Acad. imperiale des sciences

de St. Petersbourg, vol. 6, pp. 12-29, 1813.

64. Lagrange. Sur 1 usage des fractions continues dans le calcul inte*-

gral. Nouveaux Mem. de 1 Acad. roy. des sciences et belles-

lettres de Berlin, 1776, pp. 236-264, or Oeuvres, vol. 4, p. 301 flf.

One of the few important early works.

See 546
;
also No. 66a for work on differential equations of the 1st order.

B. Miscellaneous Differential Equations of the Second Order.

In a numerous class of continued fractions the denominators

of the convergents satisfy allied (Heun,
&quot;

gleichgruppige &quot;)
differ

ential equations of the second order. Early instances are found

in works of Gauss (No. 114), Jacobi (No. 65) and Heine (No. 72).

The theory, from two different aspects, is furthest developed in

66a and 76.
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65. Jacobi. Untersuchung iiber die Differentialgleichung der hyper-

geometrischen Reihe. Nachlass. Jour, fur Math., vol. 56, 1859
;

see in particular 8, pp. 160-161, or Werke, vol. 6, p. 184.

66. Laguerre. (a) Sur la reduction en fractions continues d une frac

tion qui satisfait a une equation differentielle lineaire du pre
mier ordre dont les coefficients sont rationnels. Jour, de Math.,
ser. 4, vol. 1, pp. 135-165, 1885. (jt**^ V*l y. ^\^5

(This
is a comprehensive memoir which incorporates substan

tially all the following memoirs :

(b) Sur la reduction en fractions continues d une classe assez

&amp;gt;&amp;gt; 6tendue de fonctions. Comp. Rend., vol. 87 (1878), p. 923, or

Oeuvres, vol. 1, p. 322.

&amp;gt;. (c) Same title as (a). Bull, de la Soc. Math, de France, vol. 8

(1880), pp. 21-27, or Oeuvres, vol. 1, p. 438.

(d) Sur la reduction en fraction continue d une fraction qui satis

fait a une equation lineaire du premier ordre a coefficients ration

nels. Comp. Rend., vol. 98 (1884), pp. 209-212 or Oeuvres,

vol. 1, p. 445.

67. Laguerre. (a) Sur 1 approximation des fonctions d une variable

au moyen de fractions rationnelles. Bull, de la Soc. Math, de

France, vol. 5 (1877), pp. 78-92 or Oeuvres, vol. 1, p. 277.

(b) Sur le developpement en fraction continue de

Ibid., vol. 5 (1877), pp. 95-99 or Oeuvres, vol. 1, p. 291.

(
x -f- 1 \ w

* )x 1 /

Ibid., vol. 8 (1879), pp. 36-52, or Oeuvres, vol. 1, p. 345.

(d) Sur la reduction en fractions continues de eF(x
&amp;gt;, F(x) desig-

nant un polyn6me entier. Jour, de Math., ser. 3, vol. 6 (1880),

pp. 99-110, or Oeuvres, vol. 1, p. 325.

(d )
Same subject. Comp. Rend.

,
vol. 87 (1878), p. 820, or Oeuvres,

vol. 1, p. 318.

68. Humbert. Sur la reduction en fractions continues d une classe de

fonctions. Bull, de la Soc. Math, de France, vol. 8, pp. 182-

187, 1879-1880.

69. Hermite et Fuchs. Sur un developpement en fraction continue.

Acta Math., vol. 4, pp. 89-92, 1884.

See also No. 20, 34 ter, 71-76.
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C. Differential Equations of Order Higher than the Second.

70. Pincherle. Sur la generation de systemes recurrents au moyen
d une equation lineaire differentielle. Acta Math., vol. 16, pp.

341-363, 1892-3.

See also No. 15, 86, 87, 1246.

D. The integral CfW*
Ja X z

71. Heine, (a) Ueber Kettenbriiche. Monatsberichte der k. preussi-

schen Akad. der Wissenschaften zu Berlin, 1866, pp. 436-451.

(a ) Mittheilung iiber Kettenbruche. Auszug aus dem Monatsbe

richte, u. s. w. Jour, fur Math., vol. 67, pp. 315-326, 1867.

See also Nos. 12, 26a, 28, 45, 102, 113, 118a.

E. HypereUiptic and Similar Abelian Integrals.

72. Heine. Die Lame schen Functionen verschiedener Ordnungen.

Jour, far Math., vol. 60, 1862, pp. 252-303
;
in particular pp.

256, 275, 294-297. Or see his Handbuch, vol. 1 (2
te

Auf.), pp.

388-396 and 468.

73. Laguerre. Sur 1 approximation d une classe de transcendantes qui

comprennent comme cas particulier les integrates hyperellip-

tiques. Comp. Rend., vol. 84, pp. 643-645, 1877.

(Not found in vol. 1. of his Oeuvres.)

74. Humbert. Sur 1 equation difterentielle lineaire du second ordre.

Jour, de 1 Ec. Polytech., vol. 29, cahier 48, pp. 207-220, 1880.

75. Heun. (a) Die Kugelfunctionen und Lame schen Functionen als

Determinanten. Dissertation, pp. 1-32, Gottingen. 1881.

(6) Ueber lineiire Differentialgleichungen zweiter Ordnung deren

Losungen durch den Kettenbruchalgorithmus verknupft sind.

Habilitationsschrift. 1881.

(c) Integration regularer linearer Differentialgleichungen zweiter

Ordnung durch die Kettenbruchentwickelting von ganzen Abel -

schen Integralen dritter Gattung. Math. Ann., vol. 30, pp.

553-560, 1887.

(d) Beitriige zur Theorie der Lame schen Functionen. Math.

Ann., vol. 33, pp. 180-196, 1889.

The important group-properties of the continued fraction are

here brought out and are further developed in No. 76.

76. Van Vleck. Zur Kettenbruchentwickelung hyperelliptischer und

ahnlicher Integrale. Dissertation, Gottingen ; published in the

Amer. Jour, of Math., vol. 16 (1894), pp. 1-91.
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After development first from an algebraic standpoint the sub

ject is carried further by the method of conformal representation.

The suggestion of this treatment is given in Klein s Differen

tialgleichungen, 1890-91, vol. 1, pp. 180-186.

V. GENERALIZATION OF THE ALGEBRAIC CONTINUED FRACTION.

A. General Theory.

So far as I have been able to ascertain, the first instance of the

generalization is contained in Hermite s memoir, No. 84. The

development of a general theory is due to Fade and Pincherle.

Nos. 77a, 776, and 79a are especially recommended.

*_ 77. Pincherle. (a) Saggio di una generallizzazione delle frazioni con

tinue algebriche. Memoirie della R. Accad. delle Scienzre dell

Istituto di Bologna, ser. 4, vol. 10, p. 513-538, 1890.

(a
7
)
Di un estensione dell algorithmo delle frazioni continue.

Kendiconti, R. Istituto Lombardo di Scienze e Lettere, ser. 2,

vol. 22, pp. 555-558, 1889.

(b) Sulla generalizzazione delle frazioni continue algebrique. An-

nali di Mat., ser. 2, vol. 19, pp. 75-95, 1891.

78. Hermite. Sur la generalisation des fractions continues algebriques.

Annali di Mat., ser. 2, vol. 21, pp. 289-308, 1893.

79. Fade, (a) Sur la generalisation des fractions continues alge

briques. Jour, de Math., ser. 4, vol. 10, pp. 291-329, 1894.

(O Same subject. Comp. Kend., vol. 118, p. 848, 1894.

80. Bortolotti. Un contribute alia teoria delle forme lineari alle differ-

enze. Annali di Mat., ser. 2, vol. 23, pp. 309-344, 1895.

81. Cordone. Sopra un problema fundamental delle teoria delle fra

zioni continue algebriche generalizzate. Rendiconti del Circolo

di Palermo, vol. 12, pp. 240-257, 1898.

Cordone seeks the regular algorithms which are similar to

those of Fade but occur in connection with n series in descend

ing powers of x.

B. Convergence of the Generalized Algorithm.

82. Pincherle. Contribute alia generalizzazione delle frazioni continue.

Memoirie della R. Accad. delle Scienze dell Istituto di Bologna,

ser. 5, vol. 4, pp. 297-320, 1894.

83. W. Franz Meyer, (a) Ueber kettenbruchahnlichen Algorithmen.

Yerhand. des ersten internationalen Mathematiker-Kongresses
in Zurich, pp. 168-181, 1898

;
see in particular 7.
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(a )
Zur Theorie der kettenbruchahnlichen Algorithmen. Schrif-

ten der phys-okonomischen Gesellschaft zu Konigsberg, vol.

38, pp. 57-66, 1897.

C. Special Cases of the Algorithm.

84. Hermite. Surla fonction exponentielle. Comp. Rend., vol. 77, pp. -^

18-24, 74-79, 226-233, 285-293, 1873.

This is the famous work proving the transcendence of e.

85. Hermite. (a) Sur 1 expression U sin x 4- V cos x + W. Extrait

d une lettre a Monsieur Paul Gordan. Jour, fur Math., vol.

76, pp. 303-311, 1873.

(b) Sur quelques approximations algebriques. Ibid.
,
vol. 76, pp. ^

342-344, 1873.

(c) Sur quelques equations differentielles lineaires. Extrait d une

lettre a M. L. Fuchs de Gottingue. Ibid.
,
vol. 79, pp. 324-338,

1875.

86. Laguerre. Sur la fonction exponentielle. Bull.delaSoc.Math.de

France, vol. 8 (1880), pp. 11-18, or Oeuvres, vol. 1, p. 336.

87. Humbert, (a) Sur une generalisation de la theorie des fractions

continues algebriques. Bull, de la Soc. Math, de France, vol.

8, pp. 191-196
;
vol. 9, pp. 24-30, 1879-1881.

(6) Sur la fonction (x 1)&quot;. Ibid., vol. 9, pp. 56-58, 1880-81.

88. Pincherle. Sulla rappresentazione approssimata di una funzione

mediante irrazionali quadratic!. Rendiconti, R. Istituto Lorn-
-&quot;s^

bardo di Scienze e Lettere, ser. 2, vol. 23, pp. 373-376, 1890.

89. Pincherle. (a) Una nuova estensione delle funzioni sferiche. ^
Memoirie della R. Accad. delle Scienze deU I&amp;gt;titutodi Bologna, &quot;&quot;&quot;&quot;--s

ser. 5, vol. 1, pp. 337-370, 1890.

(a
7
) Sulla generalizzazione delle funzioni sferiche. Bologna Ren

diconti, 1891-92, pp. 31-34.

(6) Un sistema d integrali ellittici considerati come funzioni

delFinvariante assoluto. Atti della R. Accad. dei Lincei, ser.

4. vol. 7
17 pp. 74-80, 1891.

90. Bortolotti. (a) Sui sistemi ricorrenti del 3 ordiue ed in particolare

sui sistemi periodici. Rendiconti del Circolo di Palermo, vol. 5,

pp. 129-151, 1891.

(6) Sulla generalizzazione delle frazioni continue algebriche peri- -

odiche. Ibid., vol. 6, pp. 1-13, 1892.

VI. Series of Polynomial* (N(iherungsnenner). 9

The series

V U
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was first given by Heine in Crelle s Jour., vol. 42 (1851), p. 72.

See also his Handbuch, vol. 1, pp. 78-79, 197-200. Among
the numerous works relating to expansions in terms of Kugel

functionen erster und zweiter Gattung may be mentioned :

91. Bauer. Von den Coefficienten der Reihen von Kugelfunctionen

einer Variablen. Jour, fur Math., vol. 56, pp. 101-121, 1859.

92. C. G. Neumann. Ueber die Entwickelung einer Function mit imag-

inarem Argumente nach den Kugelfunctionen erster und zweiter

Gattung, Halle, 1862.

93. Thome. Ueber die Reihen welche nach Kugelfunctionen fort-

schreiten. Jour, fur Math., vol. 66, pp. 337-343, 1866.

94. Laurent. Memoire sur les fonctions de Legendre. Jour, de Math.,

ser. 3, vol. 1, pp. 373-398, 1875.

See the comments by Heine in vol. 2, pp. 155-157, also by
Darboux and Laurent in the same vol., pp. 240, 420.

Numerous memoirs relate to series in terms of the polynom
ials arising from the expansion of (1 2ax + a2

)&quot;.
It suffices

here to refer to the Encyklopadie der Math. Wissenschaften,

I A 10, 31.

95. Frobenius. Ueber die Entwicklung analytischer Functionen in

^^^
. Reihen, die nach gegebenen Functionen fortschreiten. Jour.

fur Math., vol. 73, pp. 1-30, 1871.

An interesting memoir.

96. Darboux. Sur 1 approximation des fonctions de tres-grands nom-

bres et sur une classe etendue de developpements en serie, Part

2. Jour, de Math., ser. 3, vol. 4, pp. 377-416, 1878.

97. Gegenbauer Ueber Kettenbriiche. Wiener Berichte, vol. 80, Abth.

2, pp. 763-775, 1880.

98. Poincare. (a) Sur les equations lineaires aux differentielles ordi-

naires et aux differences finies. Amer. Jour, of Math., vol. 7,

pp. 243-257, 1885.

This gives an important criterion for the convergence of series

of polynomials. See lecture 4.

(a ) Sur les series des polynomes. Comp. Rend., vol. 56, p. 637,

1883.

99. On the series ^An(x a^(x 2) (x an}.

A series of this form is employed in Newton s interpolation

formula, Philosophise naturalis principia, book 3, lemma V.

See the Encyklopadie der Math. Wissenschafcen, I D 3, 3. A
similar uj-e is made by
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Cauchy. (a) Sur les fonctions interpolates. Comp. Rend., vol.

11, pp. 775-789, 1841.

See next No. 95.

Peano. (6) Sulle funzioni interpolari. Atti della R. Accad. delle

Scienze di Torino, vol. 18, pp. 573-580, 1883.

Bendixson. (c) Sur une extension a 1 infini de la formule d inter

polation de Gauss. Acta Math., vol. 9, pp. 1-34, 1886.

(c ) Sur la formule d interpolation de Lagrange. Comp. Rend.,

vol. 101 (1885), pp. 1050-1053 and 1129-1131 .

Pincherle. (d) Sull interpolazione. Memoirie della R. Accad. delle

Scienze di Bologna, ser. 5, vol. 3, pp. 293-318.

(See a u note historique&quot; by Enestrom, Comp. Rend., vol.

103, p. 523, 1886).

See also No. 103.

100. Pincherle, Sur le developpement d une fonction analytique en

serie de polynomes. Comp. Rend., vol. 107, p. 986, 1888.

101. Pincherle. Resume de quelques resultats relatifs a la theorie des

systemes recurrents de fonctions. Mathematical Papers, Chi-

cago Congress, 1893, pp. 278-287.

102. Blumenthal. Ueber die Entwickelung einer willkiirlichen Funk-

tion nach den Nennern des Kettenbruches fur

Dissertation, Gottingen, 1898.

The most advanced development of this subject is found in

the work of Blumenthal and Pincherle.

103. Laurent. Sur les series de polynomes. Jour, de Math., ser. 5,

vol. 8, pp. 309-328, 1902.

104. Stekloff. Sur le developpenient d une fonction donee en series

procedant suivant les polynomes de Tchebicheff et, en particul-

ier, suivaut les polynomes de Jacobi. Jour, fur Math., vol.

125, pp. 207-236, 1903.

See also Nos. 20, 70. 71.

104 bis. Rouche. Memoire sur le developpemeut des fonctions en series

ordonnees suivant les denorninateurs des reduites d une frac

tion continue. Jour, de FEc Plytech., cahier 37, pp. 1-34.

This mem )ir has a close connection with the work of Tcheby-
chef.

VII. On the Roots of the Numerators and Denominators of the Convergents.

105. Sylvester, (a) On a remarkable modification of Sturm s theorem.

Phil. Mag., ser. 4, vol. 5, pp. 446-456, 1853.
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(5) Note on a remarkable modification of Sturm s theorem and on

a new rule for finding superior and inferior limits to the roots of

an equation. Ibid., vol. 6, pp. 14-20, 1853.

(c) On a new rule for finding superior and inferior limits to the

real roots of any algebraic equation. Ibid., vol. 6, pp. 138-140,

1853.

(d) Note on the new rule of limits. Ibid., vol. 6, pp. 210-213,

1853.

(&amp;lt;?)

On a theory of the syzygetic relations of two rational integral

functions, comprising an application to the theory of Sturm s

functions, and that of the greatest algebraic common measure.

Phil. Trans., 1853
;
see in particular p. 496 ff.

(/) Theoreme sur les limitesdes racines reelles des equations alge-

briques. Nouvelles Ann. de Math., ser. 1, vol. 12, pp. 286-287,
1853.

(#) Pour trouver une limite superieure et une limite inferieure des

racines reelles d une equation quelconque. Ibid., ser. 1, vol. 12,

pp. 329-336, 1853.

106. Laguerre. Sur quelques proprietes des equations algebriques qui

ont toutes les racines reelles. Nouvelles Ann. de Math., ser. 2,

vol. 19 (1880), pp. 224-239, or Oeuvres, vol. 1, pp. 113-118.

Laguerre considers here the roots of the numerators and de

nominators of the approximants for/(x) and ljf(x) when f(x) is a

polynomial with real roots.

107. Gegenbauer. (a) Ueber algebraische Gleichungen welche nur reele

Wurzeln besitzen. Wiener Berichte, vol. 84 (1882), Abt. 2,

see in particular pp. 1106-1107.

(ft)
Ueber algebraische Gleichungen welche eine bestimmte An-

zahl complexer Wulzeln besitzen. Ibid, vol. 87, pp. 264-270,

1883.

108. Markoff. Sur les racines de certaines equations. Math. Ann.,

vol. 27, pp. 143-150, 1886.

108 bis. Hurwitz. Ueber die Nullstellen der Bessel schen Function.

Math. Ann., vol. 33, pp. 246-266, 1889.

Although the functions considered in this memoir are of a

special character, the memoir is mentioned here on account of

the methods employed. ^
109. Porter. On the roots of functions connected by a linear recurreW

relation of the second order. Annals of Math., ser. 2, vol. 3,

pp. 55-70, 1902.

See also Nos. 20, 26a, 31, 32a, 45, 56, 71, 74, 76, 87&amp;lt;i,
118a.
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VIII . Approximation to a Function at More Than One Point. Connection

of Continued Fractions with the Theory of Interpolation.

Under No. 99 have been already classified various works

which relate to simultaneous approximation at several points.

In addition, the following memoirs may also be consulted:

110. Cauchy. Sur la formule de Lagrange relativ a interpolation.

Analyse Alg., p. 528, or Oeuvres, ser. 2, vol. 3, pp. 429-433.

111. Jacobi. Ueber die Darstellung eine Reihe gegebner Werthe durch

eine gebrochene rationale Function. Jour, fur Math., vol. 30,

pp. 127-156, 1846. or Werke, vol. 3, p. 479.

112. Fade. Sur F extension des proprietes des reduites d une fonction

aux fractions d interpolation de Cauchy. Comp. Rend., vol.

130, p. 697, 1900.

See also Nos. 95, 99.

For general works upon interpolation which bring out the

relation of the subject to continued fractions, see Heine s

Handbuch der Kugelfunctionen, vol. 2, and MarkofFs Differ-

enzenrechnung (deutsche Uebersetzung), chap. 1, 6, 7
;
also the

following memoir :

113. Posse. Sur quelques applications des fractions continues alge-

briques. Pp. 1-175, 1886.

114. Gauss. Methodus nova integralium valores per approximationem
inveniendi. Werke, vol. 3, pp. 165-196, 1816.

115. Christoffel. Ueber die Gaussische Quadratur und eine Verallge-

meinerung derselben. Jour, fur Math., vol. 55, pp. 61-82, 1858.

116. Mehler. Bemerkungen zur Theorie der mechanischen Quadraturen.

Ibid., vol. 63, pp. 152-157, 1864.

117. Posse. Sur les quadratures. Nouvelles Ann. de Math., ser. 2,

vol. 14, pp. 49-62, 1875.

118. Stieltjes. (a) Quelques recherches sur la theorie des quadratures

dites mecaniques. Ann. de 1 Ec. Nor., ser. 3, vol. 1, pp. 409-

426, 1884.

We find here the origin of his notable 1894 memoir, No. 26a.

(a
7
) Sur 1 evaluation approchee des integrates. Comp. Rend.,

vol. 97, pp. 740 und 798, 1883.

(b) Note sur 1 integrate Cf(x)Q(x)dx.
Jo.

Nouv. Ann. de Math., ser. 3, vol. 7, pp. 161-171, 1888.

119. Markoff. Sur la methode de Gauss pour le calcul approche des in

tegrales. Math. Ann., vol. 25, pp. 427-432, 1885.
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120. Pincherle. Su alcune forme approssimate per la rappresentazione

di funzioni. MemoiriedellaR. Accad. delle Scienze dell Istituto

di Bologna, ser. 4, vol. 10, pp. 77-88, 1889.

121. Tchebychef. A brief sketch of the memoirs below will be found on

pp. 17-20 of Vassilief s memoir on &quot;P. L. Tchebychef et son

oeuvre scientifique.
&quot;

(a) Surles fractions continues. Jour, de Math., ser. 2, vol. 3, pp.X
289-323, 1858, or Oeuvres, vol. 1, p. 203-230.

(6) Sur une formule d analyse. Bull. Phys. Math, de 1 Acad. des

sciences de St. Petersbourg, vol. 13, pp. 210-211, 1854, or Oeuv

res, vol. 1, pp. 701-702.

(c) Sur une nouvelle serie. Ibid., vol. 17, pp. 257-261, 1858, or

Oeuvres, vol. 1, pp. 381-384.

(d) Sur 1 interpolation par la methode des moindres carres. Mem.
de 1 Acad. des sciences de St. Petersbourg, ser. 7, vol. 1, pp.

1-24, 1859, or Oeuvres, vol. 1, pp. 473-498.

(e) Sur le developpement des fonctions a une seule variable. Bull,

de PAcad. imp. des sciences de St. Petersbourg, ser. 7, vol. l
y

pp. J 94-199, 1860, or Oeuvres, vol. 1, pp. 501-508.

IX. MISCELLANEOUS.

122. Tchebychef. (a) Sur les fractions continues algebriques. Jour, de

Math., ser. 2, vol. 10, pp. 353-358, 1865, or Oeuvres, vol. 1, pp.

611-614.

(b) Sur le developpement des fonctions en series a 1 aide des frac

tions continues, 1866. Oeuvres, vol. 1, pp. 617-636.

(c) Sur les expressions approchees, lineares par rapport a deux

polynomes. Bull, des sciences Math, et Astron., ser. 2, vol. 1,

pp. 289, 382
;
1877.

Hermite. (d) Sur une extension donnee a la theorie des fractions

continues par M. Tchebychef. Jour, fur Math., vol. 88, pp.

12-13, 1880.

123. Tchebychef. (a) Sur les valeurs limites des integrales. Jour, de

Math., ser. 2, vol. 19, pp. 157-160, 1874.

(6) Sur la representation des valeurs limites des integrales par des

residus integraux (1885). Acta. Math. vol. 9, pp. 35-56, 1887.

Markoff. (c) Demonstration de certaines inegalites de M. Tcheby
chef. Math. Ann., vol. 24, pp. 172-178, 1884.

(d) Nouvelles applications des fractions continues. Math. Ann.,

vol. 47, pp. 579-597, 1896.

124. Laguerre. (a) Sur le developpement de (x z)
m suivant les puis

sances de (z
2

1). Comp. Kend., vol. 86 (1878), p. 956, or

Oeuvres, vol. 1, p. 315.
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(6) Sur le developpement d une fonction suivant les puissances
d une polynome. Jour, fur Math., vol. 88 (1880) ;

in particular,

p. 37, or Oeuvres, vol. 1, p. 298.

(c) Same subject. Comp. Rend., vol. 86, (1878) p. 383, or Oeuv

res, vol. 1, p. 295.

(d) Sur quelques theoremes de M. Hermite. Extrait d une lettre

addressee a M. Borchardt. Jour, fur Math., vol. 89 (1880), pp.

340-342, or Oeuvres, vol. 1, p. 360.

125. Sylvester. Preuve que TT ne peut pas etre racine d une equation

algebrique a coefficients entiers. Comp. Rend., vol. Ill, pp.

866-871, 1890.

A fundamental error in the proof has been pointed out by
Markoff. See p. 386 of vol. 30 of the Fortschritte der Math.

126. Gegenbauer. Ueber die Naherungsnenner regularer Kettenbriiche.

Monatshefte far Math, und Phys., vol. 6, pp. 209-219, 1895.

127. Bortolotti. Sulla rappresentazione approssimata di funzioni alge-

briche per mezzo di funzioni razionale. Atti della R. Accad.

dei Lincei, ser. 5, vol. 1
1? pp. 57-64, 1899.

ADDENDUM TO I A.

128. Euler. De fractionibus continuis dissertatio. Comment. Petrop.,
vol. 9, p. 129 ff., 1737.
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